Large capacity solar adsorption cooling at the Festo company
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
CEP CLEAN ENERGY POWER® 2009 Large capacity solar adsorption cooling at the Festo company Dirk Pietruschka, Antoine Dalibard, Ursula Eicker Folie 1 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
Content Part A: Solar cooling system FESTO office building and cooling system Solar collector field Research R h Projects, P j t funding f di and d institutions i tit ti involved P tB Part B: Simulation Si l ti based b d performance f analysis l i during the planning phase of the solar collector ll t field fi ld Analysed cases and control options Simulation results and conclusions Folie 2 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
Content Part C: Measured performance of the collector field 2008 compared to predicted values Part D: Online O li simulation i l i tooll Comparison online simulation tool / measured performance data Conclusions and Outlook Folie 3 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
A) Office building, FESTO AG & Co. KG Solar collector field 25.000 m² gross floor area Heat Heat- and Cold distribution through thermal activated ceilings and ventilation system Cold production with three 353 kW MYCOM adsorption chillers and thermally activated bored piles of the buildings foundation Utilisation of compressor waste heat Folie 4 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
A) Solar collector field; FESTO AG & Co. KG Collector area: 1218 m² (aperture area) 1330 330 m² (brutto (b u o area) a ea) Collector type: Paradigma CPC collectors with evacuated tubes - 58 Paradigma CPC 30 with 3,0 m² aperture area each - 232 Paradigma P di CPC 45 with ith 4,5 m² aperture area each Connection: all parallel Orientation: South Tilt angle: l 30° Guaranteed result: 500 MWh/a Folie 5 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
A) Integration of the solar collector field in the existing heat distribution Activated ceilings Stat. Cooling tower TSA max. 200 kW CPC evacuated – heating 1‐3 1 3 1218 m² tube collectors grid. 50/30°C 28/25°C Heat storages 8.5 m³ 8.5 m³ V M 70/50°C ADCM 1‐3 TWU max. TSE 600 kW 70/60°C 14/9°C ‐ Heat recovery compressors (400 ‐500 kW) ‐ 3 gas boilers 5.5 MW Heat distribution Cold distribution Folie 6 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
A) Reaserch Projects, Funding and Institutions Involved Cooperation Project: Simulation based control optimisation of buildings with sustainable cooling systems Design Design, implementation and commissioning of the monitoring system of the plant P Performance f analysis l i and d graphical hi l presentation of the monitoring data Simulation based control optimisation of the partly solar driven adsorption Simulation based p performance chillers of the FESTO AG & Co Co. KG observation and proof of guaranteed Online simulation based performance solar energy yield observation of the absorption chillers Evaluation of optimisation potentials and supporting solar collector field Folie 7 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Simulation based performance analysis of the collector field Q Questions analysed y during g the planning p g phase of the collector field: How do different collector start up temperature limits influence the annual performance of the collector field? p Mass flow control of the collector pump or simple on-/off on /off control? Performance improvement through supply temperature reduction in the primary heating circuit of the activated ceilings? Folie 8 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Dynamic simulation model in INSEL Folie 9 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Analysed control options Bezeichnung Description Regelung Control of der the Kollektorsoll- Start-up Vor-/Rücklauf Supply / return Kollektorpumpe collector pump temperatur temperature solarer Primärkreis primary solar circuit Winter Sommer Activated Winter Summer Bauteil- Heizungs- Heat ceilings aktivierung distributer verteiler Case 1 1 Variante ON / OFF 70 °C 50°C / 30°C 70°C / 60°C Variante Case 2 2 ON / OFF 50°CC 50 70°CC 70 50°CC / 30 50 30°CC 70 70°CC / 60 60°CC Variante Case 3 3 Volumenstrom mass flow 50°C 70°C 50°C / 30°C 70°C / 60°C Case 4 4 Variante Volumenstrom mass flow 40°C 70°C 40°C / 30°C 70°C / 60°C Folie 10 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Boundary conditions of the simulations Weather data: 1. Annual simulations: Insel Weather data base location Stuttgart 2 Summer 2006: 2. Nearby weather station UNI UNI-Hohenheim Hohenheim Heating load/degree of utilisation of solar heat: 1. Annual simulations: Assumption: Qh,building ≥ QCollector 2. Summer 2006: Real measured heating energy consumption of the three AdCM Shading losses: Geometric shading model Folie 11 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Results of annual simulations : - Influence of setpoints and pump control 760 14 Wh/a . +12,0% 740 12 vement / % . heating energy / MW 720 +9,4% 10 720 6,9% +6 9% nce improv 700 8 704 680 687 6 Performan eful solar h 660 4 P 640 2 Use 643 620 0 Case 1 ((Tset = 70°C Case 2 ((Tset = 50°C Case 3 ((Tset = 50°C Case 4 ((Tset = 40°C winter and summer, winter / 70°C summer, winter / 70°C summer, winter / 70°C summer, On/Off-control of On/Off-control of collector pump with collector pump with collector pump) collector pump) mass flow control) mass flow control) Useful solar heating energy / MWh/a Performance improvement Folie 12 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Results of annual simulations : - Influence of setpoints and pump control Wh/m²a . 640 50 610 47.0 energy / kW 45.9 44 8 44.8 stem efficiiency / % 580 591 45 578 550 42.0 564 spec. useful solar heating e 520 528 40 Solar sys 490 460 35 430 400 30 Case 1 (Tset = 70°C 70 C Case 2 (Tset = 50°C 50 C Case 3 (Tset = 50°C 50 C Case 4 (Tset = 40°C 40 C winter and summer, winter / 70°C summer, winter / 70°C summer, winter / 70°C summer, On/Off-control of On/Off-control of collector pump with collector pump with collector pump) collector pump) mass flow control) mass flow control) Spec. useful solar heating energy Solar system efficiency Folie 13 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Results of annual simulations : - Influence of different system losses, Case 2 820 10 800 ÆNot considered: 8.94 9 eating enerrgy / MWh//a . 780 - losses through frost protection 8 - losses through system start-up em losses / % 760 7 755 740 6 5.03 723 720 5 Syste ul solar he 717 700 4.17 4 680 687 3 Usefu 660 2 640 1 Case 2, incl. only Case 2, incl. heat Case 2, incl. storage Case 2, incl. storage storage heat losses losses throug storage heat losses and and tubing heat losses and tubing shading losses and shading losses Useful solar heating energy / MWh/a System losses Folie 14 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Simulation results summer 2006: - Meteorological conditions 250 25 Weather station UNI Hohenheim 2006 hly solar irrradiation / kWh/m² . 200 214 20 199 Temperature / °C C 150 159 15 143 130 100 10 Month 50 5 0 0 Mai June July August September Monthly solar irradiation External mean temperature Folie 15 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Simulation results summer 2006: - Solar fraction ACM heating energy demand 0.5 1000 sumption / MWh 0.45 900 0.4 800 0.35 700 ar fraction / - energy cons 0.3 600 0.25 26.3% 500 Sola g-/heating e 02 0.2 400 20.7% 14.8% 0.15 300 14.9% 15.0% 01 0.1 200 Cooling 0.05 100 0 0 Mai June July August September Solar fraction on the ACM heating energy consumption Case 2 Cooling energy consumption, FESTO 2006 Heating energy consumption ACM, FESTO 2006 Folie 16 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
B) Conclusions Due to permanent use of the produced solar heating energy: Æ high g specific p useful heating g energy gy > 530 kWh/m²a / Æ high solar system efficiency 42 – 47 % 7 % increase of solar heating energy possible for different collector temperature setpoints for summer and winter operation (70°C summer / 50°C Winter) 2,5 % increase in solar heating energy for collector pump with mass flow control instead of On-/Off control T Temperature t reduction d ti iin the th primary i heating h ti circuit i it off the th activated ceilings revels in additional 2,6 % increase of solar heatingg energy gy 15 to 25 % solar fraction of the heating energy demand of the adsorption chillers expected. Folie 17 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Measured performance of the collector field 2008 compared to predicted values Objectives: Demonstration of the quality of dynamic simulation based performance predictions. - Prediction with long term weather data (Part B B, Case 2) - Real measured performance data 2008 Discussion of possible reasons for deviations between prediction and measured data Data source: Measured performance data of the solar collector field from March to December 2008 (Monitoring system: Hochschule Offenburg, Solarthermie 2000plus Æ 5 min mean values ) Folie 18 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Measured performance compared to predicted values Wrong hydraulic brake Problems with heat flow to the building and stagnation Discharge vol. flow sensor problems Æ Intensive measurement phase Solarthermie 2000plus Folie 19 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Possible reasons for large difference between prediction and measured data Wrong hydraulic brake Æ Intensive measurement phase Folie 20 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Possible reasons for large difference between prediction and measured data Heat Production and Utilisation of the FESTO Solar Collector Field in 2008 100 100 Problems with heat flow to the building y / MWh . and stagnation 80 80 Heat utilisation / % Wrong hydraulic Discharge vol. vol flow mal energy 60 60 brake sensor problems 40 40 Solar therm 20 20 S 0 0 ay ch r r ly ril ne er st r be be be Ju Ap gu ob M ar Ju em em em Au M ct O ov ec pt Se N D Solar energy deliverd by the collector circuit including losses Measured useful solar heat delivered to the building / ACM Utilisation of delivered solar heat Folie 21 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Possible reasons for large difference between prediction and measured data Heat Distribution of the Solar Heat Delivered by the FESTO Solar Collector Field in 2008 100 Æ Much lower heat input to the low temperature heating circuit of the 80 activated ceilings than assumed! Wh . energy / MW Æ Optimisation potential? 60 40 Solarr thermal e 20 0 ch ai t r r ril ly ne r er s be be be Ju Ap M gu ob ar Ju em em em Au M ct O -20 ec ov pt Se N D Measured useful solar heat delivered to the building / ACM Heat delivered to distributer 16 (ACM and building) Heat delivered to activated ceilings of the building Æ Intensive measurement phase Folie 22 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C) Conclusions Reasons for deviations between prediction and measurement: ÆLosses through system startup and frost protection not considered in th simulation the i l ti tool t l Æ 10 % heat h t losses! l ! ÆAdditional heat losses in March and April due to a wrongly dimensioned hydraulic brake Æ backflow of warm water into the collector field during night time Æ 3 % lower measured solar irradiation ÆProblems with the heat flow to the building in August 2008 and resulting stagnation of the collector field Æ lower efficiency ÆM h lower ÆMuch l heat h t input i t to t the th low l temperature t t heating h ti circuit i it off the th activated ceilings than assumed by the ideal control of the simulation model! Æ Higher collector temperatures and lower system efficiency Æ Possible optimisation potential for the implemented control ÆTogether around 30% losses not considered in the simulations Folie 23 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
C.1) Measured performance of the adsorption chillers 2008 Ads orption c hillers 600 0.60 500 0.50 Q h,boilers Q h,c hillers erg y (MWh ) 400 0 40 0.40 Q was te_heat C OP 300 0.30 Q h,s olar A ds orption c hillers heat s ourc e period E ne C OP AK M A pril‐November 2008 200 0.20 8% 100 0 10 0.10 26% Q s olar 0 0.00 A pril May J une J uly A ug us t S eptemberO c toberNovember 66% Q was te heat Q boilers Folie 24 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D) Online simulation tool and measured pperformance data Objectives: Validation of the simulation sim lation models (collector (collecto field and ACM) Implementation of an online simulation based performance observation Simulation based control optimisation of the ACM cascade Data source: Measured performance data of the solar collector field from April to December 2008 (Monito ing system: (Monitoring s stem Ho Hochschule hs h le Offenb Offenburg, g Sola Solarthermie the mie 2000plus 2000pl s Æ 5 min mean values ) Measured detailed pperformance data of the adsorption p chillers (FESTO building management system, 10 s mean values) Folie 25 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.1) Validation dynamic solar system model Example, one day in July T _amb T c ol_out T c ol_out_s im T P S 2U_s im T P S 1O T P S 1O _s im T P S 2U V dot_c ol V dot_tank Gt 110 1200 Tstorage1,top storage1 top ≥ 80 80°C C Heat delivered to ACM T < 72 72°C C 19.02.2008 19 02 2008 05.07.2008 storage1 top storage1,top 100 w rate / m³/h T c ol,out 1000 90 80 S olar irradia tion / W/m² ‐ Volume flow s torage 1,top 800 T emperaature / °C 70 60 s torage 2,bottom 600 50 Gt 40 400 T amb 30 20 200 V dot d tc ol 10 V dotload 0 0 0:05 0:45 1:25 2:05 2:45 3:25 4:05 4:45 5:25 6:05 6:45 7:25 8:05 8:45 9:25 0:05 0:45 1:25 2:05 2:45 3:25 4:05 4:45 5:25 6:05 6:45 7:25 8:05 8:45 9:25 0:05 0:45 1:25 2:05 2:45 3:25 00 00 01 02 02 03 04 04 05 06 06 07 08 08 09 10 10 11 12 12 13 14 14 15 16 16 17 18 18 19 20 20 21 22 22 23 Folie 26 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.1) Validation dynamic solar system model Results and conclusions Comparison of measured and simulated results Qsol Qcol_m Qcol_sim Qload_m Qload_sim Dev. Dev. col load kWh/m² kWh/m² kWh/m² kWh/m² kWh/m² % % 5th July 8.04 4.32 4.17 3.92 4.04 -3.2 +3.1 Conclusions - Good representation of the solar system performance by the developed dynamic system model - Improvements: - shorter time steps 10 s instead of 5 min mean values Æ Data transfer via OPC and Labview from the BMS - Improvement of the stratified solar storage model Æ fixed heat input at predefined storage layers Folie 27 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.2) Development and validation adsorption p chiller model Problem: Discontinuous dynamics of adsorption/desorption cycle causes variable cooling effects Æ Dynamic y model required q which accounts for the transient behaviour [Saha 1995 + simplified silicagel model according to Henry’s law proposed by Ng and Chua 2001] Objectives: Analysis y of optimisation p potentials p through g the implementation p of variable cycle times in the ACM control Implementation of an online simulation tool for plant observation and control optimisation with e.g. variable generator mass flow rates at part load or optimised control of the chiller cascade Folie 28 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.2) Comparison to measured data at standard operation conditions 80 70 G enerator 60 perature / °C 50 40 Abs orber / C ondens er 30 T emp 20 10 E vaporator 0 0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 T ime / S ek T g,in T g,out, meas T g,out s im T a,in / T c,in T a,out meas T a,out s im T c,out meas T c,out s im T e,in i T e,out meas T e,out s iim Folie 29 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.2) Comparison to real measured data with different generator volume flow rates Theat_out Tcool_out Tchill_out Theat_out_sim Tcool_out_sim Tchill_out_sim Theat_in Tcool_in Tchill_in 80 19.03.2008 Vdot_heat = 90 m³ / h Vdot_cool = 200 m³/h Vdot_chill = 58 m³ / h 70 60 Generator C Case 1 50 ure / °C Temperatu 40 Adsorber / Condenser 30 20 Evaporator 10 0 36 26 16 06 56 46 36 26 16 06 56 46 36 26 16 06 56 46 36 26 16 06 56 46 36 26 16 06 56 46 36 26 16 06 56 46 36 26 16 06 :03:3 :04:2 :05:1 :06:0 :06:5 :07:4 :08:3 :09:2 :10:1 :11:0 :11:5 :12:4 :13:3 :14:2 :15:1 :16:0 :16:5 :17:4 :18:3 :19:2 :20:1 :21:0 :21:5 :22:4 :23:3 :24:2 :25:1 :26:0 :26:5 :27:4 :28:3 :29:2 :30:1 :31:0 :31:5 :32:4 :33:3 :34:2 :35:1 :36:0 Folie 30 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.2) Comparison of results and conclusions Comparison of measured and simulated data Theat_in Vdot_heat P_cool,m P_cool,sim COP_m COP_sim Dev. Dev. Pcool COP °C m³/h kW kW - - % % Case 1 70-72 90 338.7 346.3 0.49 0.52 + 2.3 + 6.3 Case 2 78-80 65 360.6 358.0 0.458 0.476 - 0.7 + 3.9 Case 3 68-70 50 304.3 295.6 0.49 0.54 - 2.8 + 11.7 Conclusions - Very good agreement between simulation model and measurementt also l for f variable i bl operation ti conditions diti - Implementation as online simulation tool in February 2009 Folie 31 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
D.3) Implementation of online simulation tools in the local BMS Local Data Logging Supervisory Control Module OPC-Clients DS DS- BMS Server O li Si Online Simulation l ti T Tooll vpn Remote Desktop Citadel PC Anywhere SQL Database Daily archiv FTP 02.07.2007.zip OG / Stgt Local E t External l Folie 32 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
Outlook Automated data-transfer between BMS and online simulation tool with high time resolution (OPC-interface, LabView, DataSocket) Æ finished Implementation of a permanent and automated performance observation of solar plant and adsorption chillers Æ February / March 2009 Primary energy optimised simulation based control of the adsorption chillers including all subsystems Æ May / June 2009 Folie 33 5. CEP 2009, Stuttgart Januar 2008 Zentrum für angewandte Forschung an Fachhochschulen M.Sc. Dirk Pietruschka Nachhaltige Energietechnik www.zafh.net
Sie können auch lesen