Ubung zum Vertiefungsmodul Managerial Finance Wintersemester 2014/15 - Mario Brandtner Wintersemester 2014/15 Lehrstuhl f ur Allgemeine ...
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
Übung zum Vertiefungsmodul Managerial Finance Wintersemester 2014/15 Mario Brandtner Wintersemester 2014/15 Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insb. Finanzierung, Banken und Risikomanagement Friedrich-Schiller-Universität Jena 1
Übung Managerial Finance Allgemeines zur Übung Termin: • Donnerstag, 08:15 - 09:45 Uhr, Hörsaal 7, CZ 3 Übungsaufgaben: • Lehrstuhl-Homepage Sprechzeiten am Lehrstuhl: • Prof. Dr. Wolfgang Kürsten: Dienstag, 12:00 - 13:00 Uhr (Anmeldung im Sekretariat) • Dr. Rainer Linde: Montag, 12:00 - 14:00 Uhr • Dr. Mario Brandtner: Mittwoch, 8:30 - 10:30 Uhr • Dipl.-Math. oec. Verena Lindow: Mittwoch, 14:00 - 16:00 Uhr • M. Sc. Michael Börner: Dienstag, 09:00 - 11:00 Uhr • Dipl.-Kfm. Robert Rischau: Mittwoch, 09:00 - 11:00 Uhr 2
Übung Managerial Finance Aufgabe 1 Übung am 30.10.2014: Aufgabe 1 Gegeben sei die folgende Menge möglicher Konsumpläne C: 3 2 1 2 4 1 C = {c1 , . . . , c6 } = 0 , 1 , 1 , 1 , 0 , 2 3 3 2 1 0 3 Ermitteln Sie die effizienten Konsumpläne unter Anwendung des Maxi- mumprinzips der Effizienz. Aufgabe 2 Ermitteln Sie mit Hilfe des Maximumprinzips der Effizienz die Menge effi- zienter Konsumpläne bei einem zweiperiodigem Zeithorizont und Kassen- haltungsmöglichkeit. Das Wirtschaftssubjekt erhalte periodenweise Ein- kommen von y0 = 10 und y1 = 20. Aufgabe 3 Ermitteln Sie mit Hilfe des Maximumprinzips der Effizienz die Menge effizienter Konsumpläne bei einem zweiperiodigem Zeithorizont und voll- kommenen Kapitalmarkt mit einem Zinssatz i = 20%. Das Wirtschafts- subjekt erhalte weiterhin ein periodenweise Einkommen von y0 = 10 und y1 = 20. Vergleichen Sie die Resultate mit denen aus Aufgabe 2. Aufgabe 4 Ein Investor verfüge über eine beliebig teilbare und unbegrenzt durchführ- bare Realinvestition, die bei einer √ Investitionssumme von I0 nach einer Periode den Rückfluss g(I0 ) = 2,2 · I0 liefert. Der Zinssatz am vollkom- 3
Übung Managerial Finance Aufgabe 4 menen Kapitalmarkt betrage i = 10%. Der Investor verfüge über kein Einkommen, d.h. y0 = y1 = 0. (a) Veranschaulichen Sie im Konsumraum die Transformationskurve so- wie den Barwert und den Endwert des optimalen Realinvestitions- plans graphisch. (b) Berechnen Sie das optimale Realinvestitionsvolumen sowie den Bar- wert und den Endwert des optimalen Realinvestitionsplans. 4
Übung Managerial Finance Aufgabe 5 Übung am 06.11.2014 und 13.11.2014 Aufgabe 5 KA Warum ist auf einem unvollkommenen Kapitalmarkt (iH < iS ) die Se- parierbarkeit von Konsum- und Investitionsentscheidung nicht generell möglich? Aufgabe 6 Gegeben sei ein Kapitalmarkt ohne Kassenhaltungsmöglichkeit mit den folgenden zwei Wertpapieren: Wertpapier Preis t=1 t=2 WP 1 12,5 5 10 WP 2 15,1 7 11 neues WP y ?? 10 22 Ein Emittent bringt ein weiteres Wertpapier y mit y1 = 10, y2 = 20 auf den Markt. Wie muss er den Preis festlegen, damit keine Arbitra- gemöglichkeit besteht? Aufgabe 7 Auf einem Kapitalmarkt gelten die folgenden Kassazinssätze: Laufzeit Kassazins 1 Jahr 3,0% 2 Jahre 3,2% 3 Jahre 3,3% 4 Jahre 3,4% (a) Welche Zinsstruktur liegt vor? 5
Übung Managerial Finance Aufgabe 7 (b) Ermitteln Sie die an diesem Kapitalmarkt gültigen Terminzinssätze. (c) Ermitteln Sie die Kurse der folgenden Wertpapiere (Nennwert jeweils 100): – Zerobond mit 3 Jahren Restlaufzeit – Anleihe mit 4 Jahren Restlaufzeit und einem Cupon von 5% Aufgabe 8 Auf einem Kapitalmarkt werden die folgenden Wertpapiere gehandelt (Nennwert jeweils 100): • Zerobond mit einem Jahr Restlaufzeit, aktueller Kurs 97,00 Euro • Zerobond mit zwei Jahren Restlaufzeit, aktueller Kurs 93,70 Euro • Zerobond mit drei Jahren Restlaufzeit, aktueller Kurs 90,00 Euro Ermitteln Sie die an diesem Kapitalmarkt gültigen stetigen Kassa- und Terminzinssätze. 6
Übung Managerial Finance Aufgabe 9 Übung am 20.11.2014 Aufgabe 9 Gegeben sei ein Kapitalmarkt unter Unsicherheit mit zwei Zeitpunkten und den folgenden Wertpapieren: Zeitpunkt Preis s=1 s=2 Wahrscheinlichkeit 1 0,2 0,8 WP 1 1,75 1 2 WP 2 ?? 2 1 Der Kapitalmarktzins beträgt (1 + r) = 1. (a) Stellen Sie das Arbitrage-LP und das dazu duale Programm auf. (b) Ermitteln Sie die stochastischen Diskontfaktoren und interpretieren Sie diese. (c) Ermitteln Sie den Preis von Wertpapier 2. Aufgabe 10 Ermitteln Sie, ausgehend vom Arbitrage-LP der Aufgabe 7, die risikoneu- trale Verteilung. Wie verändert sich die risikoneutrale Verteilung, wenn der Kapitalmarktzins (1 + r) = 1,1 beträgt? 7
Übung Managerial Finance Aufgabe 11 Übung am 27.11.2014 Aufgabe 11 Auf einem Kapitalmarkt existieren zwei riskante Wertpapiere 1 und 2 mit den folgenden Eigenschaften: E(R1 ) = 0,07, std(R1 ) = 0,5, E(R2 ) = 0,12, std(R2 ) = 0,8, corr(R1 , R2 ) = 0,2. Weiterhin existiert ein sicheres Wertpapier mit einer Rendite von R0 = 0,06. (a) Welche Anteile von Wertpapier 1 und Wertpapier 2 werden innerhalb des riskanten Teilportfolios von jedem Anleger gewählt? (b) Welche Aufteilung zwischen risikofreier Anlage und riskantem Teilportfolio nimmt ein Entscheider mit dem Präferenzfunktional Φ(W1 ) = E(W1 ) − λ2 · V ar(W1 ), dem Risikoaversionsparameter λ = 1 und einem Anfangsvermögen in Höhe von W0 = 100 vor? (c) Zeichnen Sie die Wertpapierlinie für die angegebenen Wertpapiere. Aufgabe 12 Gegeben seien folgende Informationen über zwei riskante Wertpapiere, das Marktportfolio und den risikofreien Zinssatz: E(Ri ) corr(Ri , RM ) std(R1 ) WP 1 1,155 0,9 0,2 WP 2 1,092 0,8 0,09 MP 1,12 1 0,12 r 1,05 0 0 (a) Zeichnen Sie die Wertpapierlinie (security market line). (b) Wie hoch ist das systematische Risiko der Wertpapiere? (c) Tragen Sie die Wertpapiere in die Zeichnung ein. 8
Übung Managerial Finance Aufgabe 12 Aufgabe 13 KA (a) Kann im CAPM ein Wertpapier auch eine erwartete Rendite aufwei- sen, die kleiner als die Rendite der sicheren Anlage ist? (b) Begründen Sie, warum im CAPM ein Zero-Beta-Portfolio und die sichere Anlage dieselbe Rendite aufweisen müssen. Aufgabe 14 KA Wann ist ein Kapitalmarkt informationseffizient? Welche Formen der In- formationseffizienz gibt es auf Kapitalmärkten und worin unterscheiden sie sich? 9
Übung Managerial Finance Aufgabe 15 Übung am 04.12.2014 Aufgabe 15 KA Welche Finanzierungsreihenfolge empfiehlt die Pecking Order-Theorie? Aufgabe 16 Ein rein eigenkapitalfinanziertes Unternehmen mit M = 10 umlaufenden Aktien erzielt den unsicheren Rückstrom ( 100 p1 = 0,5 w0 = . 160 p2 = 0,5 Weiterhin steht ein Investitionsprojekt zur Verfügung, dass die Investiti- onssumme I = 18 erfordert und den Rückstrom ( 30 p1 = 0,5 wp = 20 p2 = 0,5 generiert. Der Kapitalmarkt sei durch die stochastischen Diskontfaktoren Q b = (0,9; 0,7) charakterisiert. (a) Ermitteln Sie den Gleichgewichtsemissionspreis E ∗ , wenn zur Finan- zierung der Investitionssumme N = 3 junge Aktien begeben werden. (b) Nehmen Sie nun an, der Emissionspreis wird durch E = 9 festgelegt. Welchen Wert hat das gesetzliche Bezugsrecht? (c) Ist das Projekt finanzierbar und/oder vorteilhaft? (d) Nehmen Sie nun an, das Investitionsprojekt habe die Investitions- 10
Übung Managerial Finance Aufgabe 16 summe I = 21 und erwirtschafte den Rückstrom ( −16,66 p1 = 0,5 wp = 80 p2 = 0,5 Welchen Einfluss hat die Verschuldung in Höhe von D = 90 auf die Finanzierbarkeit und die Vorteilhaftigkeit dieses Projektes? Beispiel-Klausuraufgaben: Aufgabe 17 KA Erläutern Sie das Modell der intertemporalen Konsumentscheidung mit zwei Zeitpunkten t = 0, 1 und t = 1, verfügbaren Einkommen y0 , y1 bei Existenz eines vollkommenen Kapitalmarktes und der Möglichkeit zur Realinvestition. Welches Investitionsvolumen wird realisiert und was gilt für Konsum- und Investitionsentscheidung? Aufgabe 18 KA Welcher Zusammenhang besteht zwischen der Fristigkeitsstruktur der Zinssätze und der Arbitragefreiheit des Kapitalmarktes bei Sicherheit? 11
Übung Managerial Finance Aufgabe 19 Übung am 11.12.2014 Aufgabe 19 Die Neuemission einer Aktie hat die zukünftigen Kursausprägungen VL = 200 und VH = 400, die jeweils mit einer Wahrscheinlichkeit von 0,5 ein- treten. Das Emissionvolumen beträgt m = 100 Stück und die Anzahl po- tentieller Zeichner beträgt N = 160, die im Anteil π = 0,375 Informierte sind. (a) Ermitteln Sie den Emissionspreis K und das Underpricing. (b) Wie verändern sich Emissionpreis und Underpricing, wenn die Kon- sortialbank A mit dem Kundenanteil q = 0,3 ihre Kunden bevorzugt behandelt? 12
Übung Managerial Finance Aufgabe 20 Übung am 18.12.2014 Aufgabe 20 KA Was bedeutet bei Kreditsicherheiten die Unterscheidung “collateral vs. covenants” sowie “extern vs. intern”? Nenen Sie jeweils Beispiele! Aufgabe 21 KA Ein Unternehmer verfügt über Eigenkapital in Höhe von EK = 100 und möchte ein einperiodiges Investitionsprojekt mit der Investitionssumme I = 200 finanzieren. Der Fehlbetrag soll über Bankkredite aufgebracht werden. Der risikofreie Zins beträgt i = 5%. Das Unternehmensvermögen am Periodenende beträgt 250 1/3 Y = 100 1/3 . 50 1/3 • Berechnen Sie den risikoadäquaten Zins einer Bank, die den Fehlbe- trag I − EK allein finanziert! • Welche Zinsen verlangen zwei Banken, die jewils die Hälfte des Fehl- betrages im Gleichrang finanzieren? • Welche Zinsen verlangen zwei den Betrag I − EK hälftig finanzie- rende Banken, von denen Bank 1 sich im Insolvenzfall Vorrang hat einräumen lassen? • Welchen Vermögensnachteil erleidet Bank 1, die zunächst gutgläubig davon ausging, dass der Schuldner ihr Vorrang einräumen würde, dann jedoch feststellen muss, dass er diesen bereits einer anderen Bank 2 eingeräumt hat? 13
Übung Managerial Finance Aufgabe 22 Übung am 06.01.2015 Aufgabe 22 KA Investition, Finanzierung und Kapitalmarkt: a) Erläutern Sie die Fisher-Separation bei Sicherheit grafisch (1- Periodenfall)! (7,5 Punkte) b) Was versteht man (bei Sicherheit und T Perioden) unter einem arbi- tragefreien Kapitalmarkt? Welcher Zusammenhang besteht zur Fris- tigkeitsstruktur der Zinssätze und wie lässt sie sich erklären? (15 Punkte) c) Welche Rolle spielt die Spanning-Prämisse bei der Übertragung der Fisher-Separation auf den T-Periodenfall (keine Rechnungen!)? (2,5 Punkte) d) Was versteht man unter einem informationseffizienten Kapitalmarkt und welche Formen gibt es? (5 Punkte) Aufgabe 23 KA Unternehmensfinanzierung: a) Weshalb können Manager Projekte finanzieren, die für die Aktionäre gar nicht vorteilhaft sind? (10 Punkte) b) b) Was versteht man unter ... b1) Beteiligungsgesellschaften und wie arbeiten sie? (4 Punkte) b2) Winner´s Curse und Underpricing beim Going Public, und wie lässt es sich im Rock-Modell erklären (keine Rechnungen)? (5 14
Übung Managerial Finance Aufgabe 23 Punkte) b3) Mengentender, Preistender und Bookbuilding-Verfahren? (3 Punkte) c) Ein beschränkt haftender Unternehmer möchte einen Kredit über B=200 zur Finanzierung eines Investitionsprojektes mit dem unsi- cheren Rückstrom 350 1/2 (s1 ) Y = 280 1/4 (s2 ) 150 1/4 (s3 ) aufnehmen. Der Zinssatz für risikofreie Anlagen beträgt r = 5%. c1) Welchen Spread muss der Unternehmer zahlen? Nehmen Sie hier- zu an, dass die Kreditverpflichtungen lediglich im Zustand s3 nicht voll bedient werden können? (3 Punkte) c2) Der Unternehmer teilt nun die Kreditsumme auf zwei Banken zu jeweils B1 = B2 = 100 auf. Welche Spreads verlangen die Gläubiger bei Gleichrang? (2 Punkte) c3) Welche Spreads resultieren, wenn Bank 1 Vorrang durchsetzt? Welche Rolle haben in diesem Kontext Negativklauseln im Kre- ditvertrag? (3 Punkte) 15
Übung Managerial Finance Aufgabe 24 Übung am 15.01.2015 Aufgabe 24 KA Welche Transferfunktionen (erläutern!) übernehmen Banken? Wie werden sie im Kontext von Basel II (im Grundsatz) reguliert? 16
Übung Managerial Finance Aufgabe 25 Übung am 22.01.2015 Aufgabe 25 Die Vermögensänderung V0 − Vt einer Bank in [0,t] (a) sei gleichverteilt auf dem Intervall [−100,100], (b) sei normalverteilt mit den Parametern µ = 0, σ = 50, (c) habe die Realisationen −100 0,25 V0 − Vt = 0 0,50 . 100 0,25 Ermitteln Sie jeweils den Value-at-Risk für α1 = 0,125 und α2 = 0,25. Aufgabe 26 Seien X und Y zwei stochastisch unabhängige Wertpapiere mit den Zah- lungsströmen ( −100 0,04 X=Y = . 0 0,96 Ermitteln Sie den Value-at-Risk zum Konfidenzniveau α = 0,05 für die Einzelpositionen X und Y und für das Portfolio X + Y . 17
Übung Managerial Finance Aufgabe 27 Übung am 05.02.2015 Aufgabe 27 KA Erläutern Sie die Unterschiede zwischen (µ, σ)-effizienten Portfolios, naiver Diversifikation und optimalen Portfolios nach Einführung von Shortfall-Constraints. Aufgabe 28 KA Welcher Zusammenhang besteht zwischen der (µ, σ)-Portfolio Selection einer Bank und der Vorgabe einer Obergrenze bei Value-at-Risk durch die Aufsicht? 18
Übung Managerial Finance Aufgabe 29 Übung am 10.02.2015 Aufgabe 29 KA Erläutern Sie das Immunisierungprizip der Duration. Inwiefern agiert der immunisierte Investor als Maximin-Entscheider? 19
Sie können auch lesen