Aktuelle Information über Coronavirus - 2020-11-15 Klaus Friedrich - LFV Bayern
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
Inhalt 1. Zahlen und Fakten (Folie 8 ff) 2. Strategie (Folie 30 ff) 3. Labor und Testung (Folie 60 ff) 4. Pharmakologie (Folie 71 ff) 5. Medizinische Versorgung (Ambulant (Folie 76 ff), Kliniken (Folie 77 ff ), Intensiv (Folie 79ff) 6. Masken (Folie 84 ff) 7. Reinigung und Desinfektion (Folie 86 ff) 8. Sonstiges (Folie 89 ff)
Gefährdung für die Gesundheit der Bevölkerung in Deutschland weiterhin als hoch ein, für Risikogruppen als sehr hoch.
weltweit …
weltweit …
Weltweit …
weltweit …
Tote
13.11.2020
Infektionsgeschehen Deutschland … Ansteckung
Infektionsgeschehen Deutschland … Entwicklung
Inhalt Strategie
15.11.2020
15.11.2020
14.11.2020
Berlin – Nach der Halbzeit des Teillockdowns zur Eindämmung der Coronapandemie in Deutschland will die Bundesregierung an den Einschränkungen absehbar festhalten. „Für die Bundesregierung kann ich sagen, dass bei diesem Stand der Dinge für Montag jedenfalls keine Lockerungen von Einschränkungen zu erwarten sind“, sagte Regierungssprecher Steffen Seibert heute in Berlin. „Die kann es noch nicht geben.“ An diesem Montag beraten Bundeskanzlerin Angela Merkel (CDU) und die Ministerpräsi- denten über die seit Anfang vergangener Woche geltenden Einschränkungen. Bereits bislang war geplant, dass diese den ganzen November über aufrecht erhalten bleiben. Mit den Worten Seiberts bleibt nun zunächst weiter unklar, ob weitere Maßnahmen für nötig gehalten werden und wie es danach weitergeht. Zu früh für ein abschließendes Urteil Seibert wies darauf hin, dass sich weiter immer mehr Menschen mit dem Virus anstecken. „Der Anstieg der Zahlen hat sich abgeflacht, aber sie steigen eben immer noch an.“ Er sagte, es müsse abgewartet werden, wie die Maßnahmen wirken. „Jeder Tag zählt.“ Es sei zu früh für ein abschließendes Urteil. Mit Lockerungen würde das Land steigende Infek- tionszahlen riskieren, sagte Seibert. Das Ziel sei die Annäherung an eine Sieben-Tage-Inzidenz von 50. Diese Zahl der Neuinfek- tionen pro 100.000 Einwohner und Woche liegt seit Tagen deutlich über 130. Erst bei der Größenordnung um die 50 sei es aber wieder möglich, dass die Gesundheitsämter einzelne Kontakte von Infizierten nachvollziehen könnten, sagte Seibert.
Risikobewertung … schätzt die Gefährdung für die Gesundheit der Bevölkerung in Deutschland weiterhin als hoch ein, für Risikogruppen als sehr hoch
Strategie … L üftung
Abstract The COVID-19 pandemic dramatically changed human mobility patterns, necessitating epidemiological models which capture the effects of changes in mobility on virus spread1. We introduce a metapopulation SEIR model that integrates fine-grained, dynamic mobility networks to simulate the spread of SARS-CoV-2 in 10 of the largest US metropolitan statistical areas. Derived from cell phone data, our mobility networks map the hourly movements of 98 million people from neighborhoods (census block groups, or CBGs) to points of interest (POIs) such as restaurants and religious establishments, connecting 57k CBGs to 553k POIs with 5.4 billion hourly edges. We show that by integrating these networks, a relatively simple SEIR model can accurately fit the real case trajectory, despite substantial changes in population behavior over time. Our model predicts that a small minority of “superspreader” POIs account for a large majority of infections and that restricting maximum occupancy at each POI is more effective than uniformly reducing mobility. Our model also correctly predicts higher infection rates among disadvantaged racial and socioeconomic groups2–8 solely from differences in mobility: we find that disadvantaged groups have not been able to reduce mobility as sharply, and that the POIs they visit are more crowded and therefore higher-risk. By capturing who is infected at which locations, our model supports detailed analyses that can inform more effective and equitable policy responses to COVID-19.
In a concurrent opinion piece published in Nature, Marc Lipsitch and Kevin Ma at the Harvard T.H. Chan School of Public Health, wrote that there is limited epidemiological data on how interventions curb infection. Such models, they said, can act as a starting point to guide policy decisions about reopening. The models produced in the study reported Tuesday also suggested that full-blown lockdowns aren’t necessary to hold the virus at bay. Masks, social distancing and reduced capacity all can play a major role in keeping things under control. Capping occupancy at 20% in locations in the Chicago metro area cut down on predicted new infections in the study by more than 80%. And because the occupancy caps primarily only impacted the number of visits that typically occur during peak hours, the restaurants only lost 42% of patrons overall. Reducing maximum occupancy numbers, the study suggested, may be more effective than less targeted measures at curbing the virus, while also offering economic benefit.
Reopening Strategies “We need to be thinking about strategies for reopening the economy,” said Jure Leskovec, a Stanford University computer scientist and lead author on the paper. “This allows us to test different reopening scenarios and assess what that would mean for the spread of the virus.” Without virus mitigation measures, he said, they predicted that a third of the population might be infected with the virus. When they fit their model to publicly available data for the daily number of infections, the researchers found it could predict epidemic trajectories better than other models. The model also suggests just how effective lock-down measures can be in public spaces by noting infections and the use of those spaces over time as cities put lockdowns into effect. In Miami, for example, infections modeled from hotels peaked around the same time the city was grabbing headlines for wild spring-break beach parties that prevailed despite the pandemic. But those predictions shrunk significantly as lock-down measures went into effect.
Income Disparities The work also predicted a disparity in infections among income groups. Lower-income populations are more likely to become infected, they found, because they are more likely to visit smaller, more crowded places and less likely to reduce their mobility overall. The idea that restaurants may be feeding a new wave of infections as they open up isn’t unique to this study. JPMorgan Chase & Co. on Monday said they found the level of in-person spending in restaurants three weeks ago was the strongest predictor of where new cases would emerge. Similarly, higher spending in supermarkets indicated a slower spread, suggesting shoppers in those regions may be living more cautiously, according to researchers at the bank, which tracks spending of 30 million Chase credit and debit cardholders. Topol said his view is that all of these layers of data could be combined into a national virus dashboard that could go far in helping policy makers create smarter, more targeted policies for virus mitigation. He has advocated using fitness trackers as another way to flag potential virus hot spots. Leskovec said that his team is currently at work building a tool that public officials could use to make reopening decisions. “Further model testing is needed,” Ma and Lipsitch wrote in their opinion piece, “but given the challenges in gathering and interpreting other relevant data types, these findings could have a valuable role in guiding policy decisions on how to reopen society safely and minimize the harm caused by movement restrictions.”
15.11.2020
15.11.2020
15.11.2020
15.11.2020
15.11.2020
Inhalt Labor und Testung
PCR
Testung … Anzahl
Testung … Positivrate
Inhalt Pharmakologie
15.11.2020
13.11.2020
Inhalt Medizinische Versorgung Ambulante Versorgung
Inhalt Medizinische Versorgung Ambulante Versorgung Klinische Versorgung
Schwerkranke
Inhalt Medizinische Versorgung Ambulante Versorgung Klinische Versorgung Intensiv
13.11.2020
Inhalt Masken/Schutzausstattung
Inhalt Reinigung/ Desinfektion
Inhalt Sonstiges
Sie können auch lesen