"Best Practice" - Erfolgreiche EU-Antragstellung - beim Fuel Cell and Hydrogen Joint Undertaking
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
„Best Practice“ – Erfolgreiche EU-Antragstellung beim Fuel Cell and Hydrogen Joint Undertaking Karl Lötsch, HZwo e.V.
Karl Lötsch | Geschäftsführer Clustermitglieder und assoziierte Partner 56 Unternehmen 10 Forschungseinrichtungen Eingebunden in Forschungs- und Anwendungsprojekte oder in der Projektinitiierung Hauptgeschäftsfelder: • Energieversorgung • Transport und Logistik • Automobilindustrie • Werkzeugmaschinenhersteller Dresden | 7. Mai 2019 www.hzwo.eu
Karl Lötsch | Geschäftsführer Themen Brennstoffzellen Grüner Wasserstoff production technologies standardization development, operation safety, certification, strategies, safety standards semi-finished products production materials, coating plant technology, steam reforming, electrolysis periphery synergy effects machines, tools industrial usage of H2, H2 logistics fleet transport pipelines, component suppliers trucks bipolar plates, sealing, MEA sector coupling With renewable energy intermediate storage pressure vessels, system suppliers caverns, cryotechnology stack, tank system, powertrain fueling stations vehicle manufacturing storage/ fueling technologies busses, HD, passenger cars Dresden | 7. Mai 2019 www.hzwo.eu
Karl Lötsch | Geschäftsführer Erfolgreiche Anträge aus Sachsen Laufzeit: 03/2017 - 02/2020 Typ: RIA Budget: 2,9 Mio. € http://fit-4-amanda.eu Dresden | 7. Mai 2019 Quelle: http://fit-4-amanda.eu www.hzwo.eu
Karl Lötsch | Geschäftsführer Erfolgreiche Anträge aus Sachsen Laufzeit: 01/2018 - 12/2020 Typ: RIA Budget: 3 Mio. € www.mama-mea.eu Dresden | 7. Mai 2019 Quelle: www.mama-mea.eu www.hzwo.eu
Karl Lötsch | Geschäftsführer Erfolgreiche Anträge aus Sachsen Laufzeit: 01/2018 - 12/2020 Typ: RIA Budget: 4 Mio. € https://tahya.eu Dresden | 7. Mai 2019 Quelle: https://tahya.eu www.hzwo.eu
Karl Lötsch | Geschäftsführer Ablauf Antragstellung - Anfang Januar Veröffentlichung der Calls im Funding & Tender Portal oder im Annual Work Plan des www.fch.europa.eu - Sichten der Calls (15 bis 20 pro Jahr) - Ende Januar CALL INFO DAY in Brüssel mit Möglichkeit zur Vorstellung eigener Projektidee, aktive Partnersuche, Gespräche mit EU-Kommissaren und FCH-JU-Team - Konsortium bilden mindestens aus drei anerkannten Ländern • 1-2 Telefon- - Konsortialführer festlegen entspricht Projektträger während Projektlaufzeit konferenzen pro - optional professionellen Antragsteller beauftagen Woche - Registrierung aller Partner im Teilnehmerregister der Europäischen Kommission • falls möglich ein - Erstellung der Antragsdokumente anhand Word-Vorlagen des FCH-JU Treffen vor Ort - Ende April 17:00 (MEZ) Deadline zum Hochladen der Antragsdokumente - Juli/August Information Gutachterergebnis und erreichte Punktzahl über Teilnehmerportal - Dezember Erstellung und Unterzeichnung des Konsortialvertrags, (max. 8 Monate nach Einreichen des Antrags) - Januar Projektbeginn oder nächsten Call suchen Dresden | 7. Mai 2019 www.hzwo.eu
Karl Lötsch | Geschäftsführer Call 2019 Topic FCH-01-1: Demonstrating the blueprint for a zero-emission logistics ecosystem Type Budget Projects IA 10 M€ 10 M€ Transport FCH-01-2: Scaling up and demonstration of a multi-MW Fuel Cell system for IA shipping FCH-01-3: Cyber-physical platform for hybrid Fuel Cell systems RIA 1,8 M€ 1 FCH-01-4: Towards a better understanding of charge, mass and heat transports in RIA 2 M€ 1 new generation PEMFC MEA for automotive applications FCH-01-5: Underground storage HRS RIA 1,5 M€ 1 FCH-02-1: Combined electrolyser-HRS and Power-to-Gas system IA 5 M€ 1 FCH-02-2: Multi megawatt high-temperature electrolyserfor valorisationas energy IA 7 M€ 1 vector in energy intensive industry FCH-02-3: Continuous supply of green or low carbon H2 and CHP via Solid Oxide IA 3 M€ 1 Cell based Polygeneration FCH-02-4: New Anion Exchange Membrane Electrolysers RIA 2 M€ Energy FCH-02-5: Systematic validation of the ability to inject hydrogen at various RIA 2 M€ 1 admixture level into high-pressure gas networks in operational conditions FCH-02-6: New materials, architectures and manufacturing processes for Solid RIA 5 M€ 1 Oxide Cells FCH-02-7: Development of highly efficient and flexible mini CHP fuel cell system RIA 1,5 M€ 1 based on HTPEMFCs FCH-02-8: Enhancement of durability and reliability of stationary PEM and SOFC RIA 3 M€ 1 systems by implementation and integration of advanced diagnostic and control tools Cross-cutting FCH-03-1: H2 Valley Overreaching IA 20 M€ 1 FCH-04-1: Training of Responders CSA 1 M€ 1 FCH-04-2: Refueling Protocols for Medium and Heavy-DutyVehicles RIA 1,5 M€ 1 FCH-04-3: Hydrogen admixtures in natural gas domestic and commercial end uses RIA 2,5 M€ 1 Dresden | 7. Mai 2019 Quelle: fch.europa.eu www.hzwo.eu
Karl Lötsch | Geschäftsführer Call-Beispiel (TAHYA 2017) (Ausdruck „FCH-01-3-2017“) Zusammenfassung: Challange (Kontext): • Wasserstoff-Drucktank für PKW-Einsatz verbessern hinsichtlich: 1. Großserienherstellung (Stückzahlen und Kosten) 2. Fahrzeugintegration 3. Verkürzung der Befülldauer 4. Erhöhung der Sicherheit Scope (Rahmenbedingungen): • 8 technische Bedingungen, z.B. Speicherdichte, Temperaturtoleranzen • Konsortium: min. 1 Tankhersteller, 1 Druckkomponentenhersteller, 1 OEM • TRL 4 6 (Technology Readiness Level) • Projektbudget 4 Mio. € • Projektlaufzeit 3 - 4 Jahre Expected Impact (erwartete Effekte): • 7 wirtschaftlich-technische Ziele, z.B. höhere Temperaturtoleranz -60 bis +100°C • 3 Key Performance Indicators (Zielindikatoren) Type of action: Research and Innovation Action (RIA) Verweis auf Nebenbestimmungen Dresden | 7. Mai 2019 Quelle: https://tahya.eu, ec.europa.eu www.hzwo.eu
Karl Lötsch | Geschäftsführer Möglichkeiten zur Vorbereitung • Mitgliedschaft bei Hydrogen Europe – Industry Grouping oder Research Grouping und Mitarbeit in Arbeitsgruppen bei mehreren europaweiten Veranstaltungen im Jahr zur langfristigen Strategie in Europa • Einbringen von Ideen bei den verschiedenen Initiativen des FCH-JU • Teilnahme an Events des FCH-JU, z.B. Stakeholder Forum, Programme Review Day, Call Info Day, Hannover Messe, etc. • persönlicher Kontakt zu den Mitarbeitern von Hydrogen Europe und FCH-JU • Netzwerk zu Unternehmen und Forschungseinrichtungen, zur Konsotienbildung Dresden | 7. Mai 2019 www.hzwo.eu
Karl Lötsch | Geschäftsführer Veranstaltungen zu BZ und H2 in Sachsen Technologieworkshop 27. Juni 2019 Brennstoffzellensystem Institut Chemnitzer Maschinen- und Anlagenbau e.V. (ICM) und Komponenten Technologieworkshop Anfang Juli 2019 Brennstoffzellenstack Technische Universität Chemnitz und Komponenten Seminar 27. Juni 2019 Grundlagen der Technische Universität Chemnitz Brennstoffzellentechnik 26. – 27. November 2019 Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, Chemnitz Saubere Antriebe. Effizient Produziert. Dresden | 7. Mai 2019 www.hzwo.eu
Danke! Diese Maßnahme wird mitfinanziert durch Steuermittel auf der Grundlage des von den Abgeordneten des Sächsischen Landtags beschlossenen Haushaltes. HZwo e. V. Karl Lötsch info@hzwo.eu www.hzwo.eu
FCH-01-3-2017: Improvement of compressed storage systems in the perspective of high volume automotive application Specific challenge Hydrogen tanks for automotive applications are already available but they do not yet fulfil all carmakers’ and customers’ expectations in the view of hydrogen powered vehicles as an alternative to conventional modern ICE-powered vehicles. Also, the current hydrogen business is small hence production is low, cost competitiveness and build-up of a European supply chain are challenging. Four key challenges have been identified: 1. Achievement of the automotive performance and cost targets for a broader market introduction. This is mainly due to intensive carbon fiber use (quantity, quality and hence cost), conventional manufacturing processes and architectural concepts that are not compatible with mass production. To tackle this challenge, significant advances with respect to mechanical reinforcement, composite architecture optimization and improved designs of compressed overwrapped pressure vessels (COPV) with respect to cost, performance and manufacturing productivity are required. 2. Vessel and ancillary component (tank valve, pressure regulator,…) integration in the vehicle in order to ease assembling and integration procedures, thereby reducing cost and maximizing volume available to the customer. 3. Hydrogen refuelling times truly comparable to those of conventional fuels require an extended temperature range of the COPV. This would also greatly improve the safety margins with respect to temperature overshoot caused by possible malfunctions of the fuelling station. Likewise, being able to extract the maximum hydrogen mass flow regardless of the state of charge (SOC) calls for the ability of the COPV and the complete fuelling system to withstand and/or operate at lower temperatures. 4. Increase the acceptance of COPVs for hydrogen storage in automobile applications by means of offering a higher safety level. It is especially necessary to ensure that COPVs can be transferred into safe mode during thermal incidents. Scope • Development of new and/or optimized tank geometries having the same storage performance and providing an enhanced integration in the car space at a comparable price. The storage density shall be 0.023Kg/L or higher. The cost target for a production of 30,000 parts per year basis shall be 500€/kg H2 or less. • Improve filling and venting tolerance of COPV (e.g. enhanced liner materials and multi- material assembling materials and techniques to increase mechanical and temperature tolerance (e.g. real -40°C H2 filling, - 60°C cold filling, +100⁰C). • Development of an optimized production strategy (increased materials efficiency, weight and volume reduction, manufacturing optimization, optimum storage geometries/designs) • Miniaturization and integration of tank components, e.g. on-tank valve, pressure regulator • Define standardized interfaces and (sub)components in order to benefit from the economy of scales. • Development and validation of numerical tools (probabilistic models) to perform automatic or semi-automatic optimization of COPV performance and durability and reduce cost and manufacturing discrepancies. • Provide input to revised regulation codes and standards for compressed gaseous hydrogen (CGH2) tanks. • For protection against the worst-case scenario of the failure of the TPRD, a leak-before- burst vessel design should be developed. The failure mechanism of the vessel has to be studied and the reliability demonstrated. Furthermore, systems for detecting localized fires, enhanced fire protection systems/strategies as well as additional security measures are to be evaluated. 21
The consortium should include at least one vessel supplier, one pressure component developer and an OEM. The consortium should build on experience from past projects in the field (at national or European level) in order to push the most promising materials and technologies to a higher TRL/MRL. TRL at start: 4 TRL at end: 6 Any safety-related event that may occur during execution of the project shall be reported to the European Commission's Joint Research Centre (JRC), which manages the European hydrogen safety reference database, HIAD (dedicated mailbox JRC-PTT-H2SAFETY@ec.europa.eu). The FCH 2 JU considers that proposals requesting a contribution from the EU of up to EUR 4 million would allow the specific challenges to be addressed appropriately. Nonetheless, this does not preclude submission and selection of proposals requesting other amounts. Expected duration: 3-4 years Expected impact • Coherent strategy defining the ultimate weight/cost savings achievable with conventional COPV and/or novel geometries and/or novel architecture strategies providing the best trade-off. • Define production strategy in coherence with standard automotive throughput with a significant impact on: o COPV manufacturing yield (target: Increase productivity by a factor of 3) o Reduced performance scattering (Standard deviation of burst pressure reduced by 30%) • Improved filling/venting tolerance of storage systems (temperature range: -60°C to +100°C) to sustain fast-filling and unrestricted extraction. • Provide technical and performance validation of prototypes with respect to EU standards (e.g. EC79) • Produce whitepapers for RCS and/or maintenance guidance • Demonstrate leak-before-burst vessel designs and fire detection and protection concepts. • Strengthen the European industry, by creating knowledge in support of the EU growth and jobs policy agenda. The following KPIs are expected to be reached at the tank system level in compliance with the MAWP: · Volumetric capacity: 0.023Kg/L (2020) · Gravimetric capacity: 5% · Cost target for a production of 30,000 parts per year basis: 500€/kg H2 Type of action: Research and Innovation Action The conditions related to this topic are provided in the chapter 3.3 and in the General Annexes to the Horizon 2020 Work Programme 2016– 2017. 22
Sie können auch lesen