Zeitschrift für Geographiedidaktik Journal of Geography Education

Die Seite wird erstellt Sam Weigel
 
WEITER LESEN
Zeitschrift für Geographiedidaktik Journal of Geography Education
Vol. 48(3), 101–118
                 Zeitschrift für Geographiedidaktik                                                         ISSN 2698-6752
                 Journal of Geography Education                                                             DOI: 10.18452/22031

Beeinflusst die räumliche Nähe das Wissen über
den Aufbau und die Entstehung von Vulkanen? –
Eine empirische Fallstudie an zwei Deutschen
Schulen in Ecuador
Does Physical Proximity Influence Knowledge about the Structure and Formation
of Volcanoes? An Empirical Case Study at Two German Schools in Ecuador

¿Influye la proximidad física en el conocimiento de la estructura y formación de
los volcanes? Un estudio de caso empírico en dos escuelas alemanas en Ecuador

Karl-Heinz Otto             , Theofilos Toulkeridis, Dennis Edler

Abstract Ecuador ist weltweit das Land mit der größten Dichte an Hochrisikovulkanen. Wirkt sich
dies auf das Wissen von Schülerinnen und Schülern über Vulkanismus aus? Der vorliegende Beitrag

                                                                                                                            © The author(s) 2020 Reprints & permission: www.zgd-journal.de
liefert Teilergebnisse einer umfassenden Gesamtstudie über das Wissen von Schülerinnen und
Schülern aus Ecuador über den Aufbau und die Entstehung von Vulkanen/Vulkanismus. Es wurden
Schülerinnen und Schüler der Jahrgangsstufe 6 an den Deutschen Schulen in Quito und Guayaquil
befragt, die in der Schule noch keinen Unterricht über Vulkanismus hatten. Zusätzlich wurden auch
Daten von Schülerinnen und Schülern der Jahrgangsstufe 12 durch Befragungen erhoben. Die Er-
gebnisse dieser Teilstudie deuten auf einen Einfluss des Schulstandortes (Nähe zu Hochrisikovulka-
nen) auf das Wissen über die Entstehung und den Aufbau von Vulkanen/Vulkanismus hin.
Schlüsselwörter Schülerwissen, Vulkane/Vulkanismus, Ecuador, Bildung für nachhaltige Entwick-
lung (BNE)

Abstract Ecuador is characterized by the highest density of high-risk volcanoes worldwide. Does
this affect students’ knowledge of volcanism? This paper provides partial results of a comprehens-
ive overall study of the knowledge of students from Ecuador about the structure and develop-
ment of volcanoes/volcanism. The study used a questionnaire administered to sixth-grade stu-
dents without prior formal training on volcanoes and volcanism. Twelfth-grade students also This
questionnaire was also answered by high school students. In addition, the questionnaire was also
presented to twelfth-graders. The results of this sub-study indicate an influence of the proximity
to high-risk volcanoes on the knowledge about the formation and structure of volcanoes/volcan-
ism.
Keywords students’ concepts, process-related knowledge, volcanoes/volcanism, Ecuador,
Education for Sustainable Development (ESD)

Resumen Ecuador se caracteriza por contar con la mayor densidad de volcanes de alto riesgo en
todo el mundo. ¿Afecta esto a los conocimientos que tienen los estudiantes sobre el vulcanismo?
Este trabajo proporciona resultados parciales de un estudio global y completo acerca del
conocimiento que tienen los estudiantes de Ecuador sobre la estructura y el desarrollo de los
volcanes. Para desarrollar el estudio se utilizó un cuestionario que fue facilitado a los estudiantes
de sexto grado sin entrenamiento formal previo sobre volcanes y vulcanismo. Igualmente,
                                                                                                                           ZGD 3•20

también fue proporcionado a los estudiantes de 12º grado y a los de secundaria. Los resultados
de este estudio indican que existe influencia en el conocimiento de los volcanes en función de la
proximidad en aspectos relacionados con la formación y estructura de los volcanes.
Palabras clave conceptos de los estudiantes, conocimiento de los procesos relacionados,
volcanes/vulcanismo, Ecuador, Educación para el Desarrollo Sostenible (EDS)
Zeitschrift für Geographiedidaktik Journal of Geography Education
1. Begründung und Zielsetzung der vorliegenden Teilstudie
                                                                                                       102
Vulkanausbrüche und/oder andere Naturereig-        eine weitere Probandengruppe. Ziel ist es, aus
nisse können vor allem in vulnerablen Gesell-      den Ergebnissen der Gesamtstudie im Sinne
schaften (Sozial-)Katastrophen auslösen. Die       der didaktischen Strukturierung angemesse-
Ursachen dafür sind vielfältig und u.a. in dem     ne Lehr-/Lernumgebungen über Vulkane/Vul-
Beitrag von Otto et al. (2019) ausführlich be-     kanismus in Ecuador abzuleiten. Diese sollen
schrieben.                                         die Schülerinnen und Schüler dabei unterstüt-
    Durch die weltweit wachsende Anzahl und        zen, adäquate Kompetenzen aufzubauen, die
zunehmende Intensität von Naturereignissen         das risikobewusste und -reduzierende Han-
und die dadurch u.a. ausgelösten gesamtwirt-       deln im Katastrophenfall optimieren. Auf die-
schaftlichen Schäden, rückt insbesondere die       se Weise könnte geographische (Schul-)Bil-
Katastrophenvorsorge mehr und mehr in den          dung den Abbau von Vulnerabilität und den
Fokus von Wissenschaft und Öffentlichkeit.         Aufbau von Resilienz gegenüber einer akuten
Nicht zuletzt deshalb wird sie in der Roadmap      Naturgefahr fördern. Dadurch könnte sie ei-
der UNESCO (2014) zur Umsetzung des                nen Beitrag leisten, um Impulse bzw. Hand-
Weltaktionsprogramms neben dem Klima-              lungsempfehlungen für die zukünftige Ausge-
wandel, der Biodiversität und der Nachhaltig-      staltung schulischer Curricula zu geben, insbe-
keit in Produktion und Konsum als eines von        sondere für das Fach Geographie bzw. Cienci-
insgesamt vier Schwerpunktthemen heraus-           as Naturales. Durch diese Maßnahmen könnte
gestellt (vgl. UNESCO 2014). (Schul-)Bildung       die notwendige Katastrophenvorsorge in Ecua-
spielt in diesem Zusammenhang eine zentrale        dor verbessert werden (vgl. Otto 2016).
Rolle und kann als Katalysator für den Aufbau          Der Aufbau und die Entstehung von Vulka-
von Kompetenzen in der Gesellschaft betrach-       nen sind aus (fach-)wissenschaftlicher Sicht
tet werden, die zu risikobewusstem und -redu-      wichtige Aspekte der Erscheinungs- und Ursa-
zierendem Handeln befähigen (vgl. Mönter &         chenebenen von Vulkanismus (vgl. Otto et al.
Otto 2017; UN 2019). Schülerinnen und Schü-        2019). Um vulkanologische Prozesse verste-
ler sind ein Teil davon und müssen als Gestal-     hen und durchdringen zu können, ist die Aus-
tende der Politik, Wirtschaft und Gesellschaft     einandersetzung mit dem Aufbau und der
von morgen so früh wie möglich mit dem The-        Entstehung von Vulkanen obligatorisch. Aus
ma Katastrophenvorsorge konfrontiert wer-          diesem Grund sind diese Inhaltsbereiche von
den. Nur so können sie befähigt werden, sich       Vulkanismus auch in den Lehrplänen der
bei daraus resultierenden Problem- und Gefah-      Schulen im Hochrisikoland Ecuador verankert
renszenarien im Sinne einer Bildung für nach-      (vgl. Kap. 3). Die Ergebnisse der ersten Teilstu-
haltige Entwicklung kompetent zu handeln.          die deuten darauf hin, dass die räumliche
    Das primäre Ziel eines gemeinsamen For-        Lage der Schulstandorte innerhalb von Ecua-
schungsprojektes des Geographischen Insti-         dor das (Alltags-)Wissen über Vulkane/Vulka-
tuts der Ruhr-Universität Bochum (RUB) mit         nismus beeinflusst (vgl. Otto et al. 2019). Die
dem Instituto Ciencias de la Tierra y Construc-    Resultate der ersten Teilstudie belegen zudem,
ción der Universidad de las Fuerzas Armadas        dass Schülerinnen und Schüler an den unter-
(Sangolquí, Ecuador) ist es, (Alltags-)Vorstel-    suchten Deutschen Schulen in Ecuador, die nä-
                                                                                                        OTTO ET AL.

lungen und das (Alltags-)Wissen von Schüle-        her an einem Hochrisikovulkan leben, ein signi-
rinnen und Schülern über Vulkane/Vulkanis-         fikant besseres Wissen über die Lage von akti-
mus im Hochrisikoland Ecuador zu untersu-          ven Vulkanen sowie über Schutzmaßnahmen in
chen. Darüber hinaus wird erhoben, ob und          Gefahrenszenarien aufweisen. Die vielerorts
wie differenziert die Schülerinnen und Schüler     sichtbare Präsenz des Cotopaxi – in und um
auf den Ernstfall vorbereitet sind. Diese Unter-   Quito – ist möglicherweise der Grund für die
suchung bezieht sich zum einen auf Schülerin-      räumlichen Wissensunterschiede der hier le-
                                                                                                        ZGD 3•20

nen und Schüler, die noch keinen Unterricht        benden Schülerinnen und Schüler gegenüber
über die Thematik hatten. Zum anderen bil-         denen in Guayaquil, die weit entfernt von ei-
den Jugendliche zum Ende ihrer Schulzeit           nem Vulkan leben und dort zur Schule gehen.
Zeitschrift für Geographiedidaktik Journal of Geography Education
Diese räumlichen Wissensunterschiede deuten
an, dass zukünftige Lehrpläne die Nähe bzw.
Entfernung der Schulstandorte zu Hochrisiko-
                                                     besondere untersucht, ob bzw. in welchem
                                                     Ausmaß die räumliche Distanz zu einem ge-
                                                     fährlichen Vulkan sich auch auf das Wissen
                                                                                                          103
vulkanen berücksichtigen sollten. In der hier        über den Aufbau und die Entstehung von Vul-
vorliegenden zweiten Teilstudie wird – anknüp-       kanen auswirkt.
fend an die Resultate der ersten Teilstudie – ins-

2. Theoretische Grundlagen

2.1 Didaktische Rekonstruktion                       zeptiert und gelernt werden kann (vgl.
                                                     Reinfried 2015). So können vorhandene
Dass die Vorstellungen und das (fachspezifi-         (Fehl-)Vorstellungen in neue, wissenschaftli-
sche) Vorwissen von Schülerinnen und Schülern        che Vorstellungen überführt und im Neuen
wesentlichen Einfluss auf das Lernen und Pro-        verankert werden. Schülervorstellungen und
blemlösen haben, ist vielfach belegt (vgl. u.a.      didaktische Rekonstruktion werden ausführ-
Duit 2008; Reinfried 2015).                          lich und differenziert in verschiedenen Beiträ-
    Kinder und Jugendliche haben oftmals             gen u.a. von Reinfried (2010) und Schuler
auch Vorstellungen und Wissen von geogra-            (2011) thematisiert.
phischen und geowissenschaftlichen Termini,              Der vorliegende Aufsatz möchte – seiner
Prinzipien, Kräften und Prozessen, die sie in        Problemstellung entsprechend – einen Ein-
ihrem Lebensumfeld durch vielfältige All-            blick über das (Alltags-)Wissen der Lernenden
tagserfahrungen und Informationen erworben           in Ecuador zu grundlegenden Wissensdetails
haben. Nach Kattmann et al. (1997) sowie             des sehr existentiellen Phänomens Vulkane/Vul-
Baalmann et al. (2004) lassen sich Vorstellun-       kanismus liefern, speziell zum Aufbau und zur
gen in unterschiedlichen Komplexitätsebenen          Entstehung von Vulkanen. Da es sich hierbei um
einteilen. Mit zunehmendem Komplexitäts-             eine explorative Untersuchung in einem spani-
grad werden Begriff, Konzept, Denkfigur und          schen Sprachraum handelt, beschränkt sich die
Theorie unterschieden.                               Studie darauf, Wissen (Begriffe, Fakten), also die
    Vorstellungen der Schülerinnen und Schü-         erste Komplexitätsebene von Vorstellungen, zu
ler sind aber oftmals nicht identisch mit dem        erfassen und auszuwerten. Die übrigen Komple-
wissenschaftlichen Forschungsstand. Da die           xitätsebenen Konzept, Denkfigur und Theorie
Vorstellungen der Kinder und Jugendlichen            werden hier somit nicht berücksichtigt (vgl.
häufig auf bewusstem und unbewusstem Er-             Gropengießer & Marohn 2018).
fahrungs- und Erlebnislernen basieren, sind
sie im Denken tief verankert und für die Ler-        2.2 Fachliche Klärung: Vulkanismus in
nenden plausibel. Deshalb halten Lernende in         Ecuador unter besonderer Berücksichtigung
der Regel beharrlich an ihren Vorstellungen          des Cotopaxi und des Tungurahua
bzw. Wissen fest und deshalb ist es oftmals
nicht einfach, diese im Unterricht durch wis-        In Ecuador existieren auf einer Gesamtfläche
senschaftliche Konzepte zu ersetzen (vgl.            von ca. 283.560 km² insgesamt 250 Vulkane. Da-
Reinfried 2008).                                     mit weist dieses Land die global höchste Vulkan-
    Eine Möglichkeit, (Alltags-)Vorstellungen        dichte auf. Dies hat zur Folge, dass mehr als die
                                                                                                           OTTO ET AL.

von Schülerinnen und Schülern positiv zu be-         Hälfte der ca. 16 Mio. Menschen in Ecuador in
einflussen, ist die Strategie des Konzeptwech-       gefährlicher Nähe zu Vulkanen lebt. Die Ursache
sels (Conceptual Change) (vgl. Kattmann et           hierfür ist die Subduktion der Nazca-Platte unter
al.1997; Reinfried 2015). Hierfür bietet das         die Südamerikanische und die Karibische Platte
Modell der Didaktischen Rekonstruktion ei-           (vgl. Freymuller et al. 1993). Der Cotopaxi und
nen theoretischen Rahmen (vgl. Kattmann et           der Tungurahua gehören zu den 20 aktiven Vul-
al. 1997). Dabei können die Vorstellungen der        kanen Ecuadors.
                                                                                                           ZGD 3•20

Lernenden und die fachwissenschaftlichen
Perspektiven über einen Lerngegenstand so            Vulkan Cotopaxi
aufeinander bezogen werden, dass das Fach-           Der 5.897 m hohe Stratovulkan Cotopaxi liegt
wissen von den Schülerinnen und Schülern ak-         räumlich zwischen den Städten Quito (ca. 60 km
Zeitschrift für Geographiedidaktik Journal of Geography Education
südlich) und Latacunga (20 km nördlich) (vgl. Fig.
1). Während Quito ca. 1,6 Mio. Einwohner hat, le-
ben in Latacunga etwa 100.000 Menschen. Die
                                                     Am Abend des 13. August 2015 um 17:27 Uhr
                                                     wurde schließlich die größte jemals hier erfasste
                                                     seismische Aktivität erreicht, die erste deutliche
                                                                                                          104
bevölkerungsreichste Stadt Ecuadors ist mit ca.      Hinweise auf eine unmittelbar bevorstehende
2,3 Mio. Einwohnern Guayaquil.                       Explosion lieferte. Nur wenige Stunden später,
    Der Cotopaxi hat zwei Schlote, wovon der         um 4:02 und 4:07 Uhr des darauffolgenden Ta-
jüngere schneebedeckt ist. Aus zwei partiellen       ges, erfolgten die ersten beiden großen Explosi-
Zusammenbrüchen vor ca. 4.600 und ca.                onen, drei weitere dann um 10:25, 13:45 und
2.300 Jahren resultierten Lavaströme, Geröll-        14:29 Uhr. Der letzte größere, vorläufige Aus-
lawinen, Lahars, pyroklastische Ströme, Asche-       bruch des Cotopaxi erfolgte 2016 (vgl. Otto et
und Bimssteinregen sowie Gasemissionen.              al. 2019).
Die letzten vier großen Ausbrüche des Coto-
paxi in den Jahren 1534, 1742, 1768 und 1877         Vulkan Tungurahua
sind in mehreren Studien detailliert beschrie-       Der 5.019 m hohe Tungurahua ist ein typischer
ben und dokumentiert (vgl. La Condamine              Stratovulkan mit 30-35° steilen Flanken. Er ragt
1751; Sodiro 1877; Wolf 1878; Barberi et al.         ca. 3.200 m aus der umliegenden Landschaft
1995; Aguilera et al. 2004). Einige dieser Un-       heraus (relative Höhe) und besitzt einen offe-
tersuchungen beschreiben die Zerstörung              nen Krater in nordwestlicher Richtung (vgl. Fig.
von nahegelegenen Ortschaften und umge-              1). Im Gefährdungsgebiet des Tungurahua le-
bender Infrastruktur durch verschiedene bis          ben knapp 200.000 Menschen. Die unmittelbar
zu 70 km/h schnelle Lahars. Aktuelle tephra-         am Vulkan gelegene Stadt Baños hat knapp
stratigraphische und geochronologische Ar-           20.000 Einwohner. Der Tungurahua liegt in der
beiten verweisen auf insgesamt 19 größere            sog. Cordillera Real und besteht aus drei unter-
Eruptionsphasen in den vergangenen 2.200             schiedlich alten Vulkanbauten (Tungurahua I, II
Jahren (vgl. Barberi et al. 1995). Ferner erfolg-    und III).
ten zwischen 1532 und 2015 zusätzlich 59 klei-           Der rezente Vulkan, der Tungurahua III, ent-
nere Ausbrüche.                                      stand vor ca. 2.300 Jahren und besteht aus ab-
    Seit dem letzten großen Ausbruch im Jahr         gelagerten Gerölllawinen des letzten partiel-
1877 hat ein enormes Siedlungswachstum               len Zusammenbruchs und anhaltenden Serien
rund um den gletscherbedeckten Vulkan statt-         von andesitischen Laven. Die steilen Flanken
gefunden. Während 1877 in der potenziell ge-         des Tungurahua sind das Ergebnis fortwäh-
fährdeten Umgebung des Cotopaxi etwa                 render und wechselnder Ablagerung von
30.000 Menschen lebten, von denen ca. 1.000          Lava- und pyroklastischen Strömen sowie
Personen bei früheren Ausbrüchen ums Leben           Asche-, Schlacke- und Lapilliauswürfen (vgl.
kamen, leben heute mehr als 500.000 Men-             LePennec et al. 2004; Aguilera & Dueñas
schen in der unmittelbaren Gefahrenzone die-         2007). Beim Tungurahua III konnte bisher ein-
ses Vulkans. Berechnungen ergaben, dass die          mal im Jahrhundert eine aktive Eruptionspha-
nächstgelegene Stadt bei einem größeren              se nachgewiesen werden, die jeweils etwa
Ausbruch in weniger als 30 Minuten von einem         eine Dekade andauerte. Der Tungurahua, der
Lahar erreicht wird. Aufgrund der geringen Zeit      sich bis 1993 relativ unauffällig verhielt, zeigte
ist hier eine rechtzeitige Evakuierung kaum          danach aber eine deutlich steigende seismi-
möglich (vgl. Aguilera & Dueñas 2004). Die           sche Aktivität. Im August 1999 schließlich
jüngste Reaktivierung des Cotopaxi erfolgte          brach der Vulkan nach 80 Jahren erneut aus.
                                                                                                           OTTO ET AL.

Ende 2001. Diese deutete sich durch erhöhte          Diese letzte Ausbruchsphase endete vorerst
seismische Aktivität, Fumarolentätigkeit, Entga-     2016, also nach genau 17 Jahren (vgl. Otto et
sungen und kleinere phreatische Explosionen          al. 2019).
an (vgl. Cerca et al. 2005; Toulkeridis 2006,
2010). Die vulkanischen Aktivitäten nahmen           Überwachungsstationen und Katastrophenprävention
schließlich immer dramatischere Ausmaße an,          Der Cotopaxi und der Tungurahua gehören zu
bis diese im April 2015 ihren Höhepunkt er-          den Vulkanen in Ecuador, die am präzisesten
                                                                                                           ZGD 3•20

reichten. Die Anzahl der Erdbeben stieg ab die-      überwacht werden. Seit über 40 Jahren wird
sem Zeitpunkt auf einige Hundert pro Tag an          hier ein dauerhaftes Monitoring durchgeführt.
und die SO2-Emissionen erreichten mehr als           In Ecuador existieren seismologische Observa-
5.000 t pro Tag (vgl. IGEPN 2015a, 2015b).           torien mit unterschiedlichen Überwachungs-
Zeitschrift für Geographiedidaktik Journal of Geography Education
stufen und -ausstattungen (I, II, III). Observatori-
en der Überwachungsstufe I sind für sehr ge-
fährliche Vulkane eingerichtet, so für den Tun-
                                                       tioniert oder zeigen die falsche Evakuierungs-
                                                       richtung an. Ein weiteres Mittel der Katastro-
                                                       phenvorsorge ist der Besitz eines Notfallruck-
                                                                                                           105
gurahua, Cotopaxi und Guagua Pichincha. Sie            sacks, der für alle Kinder und Jugendlichen vom
haben mehr als vier Stationen zur Überwa-              Sekretariat für Risikomanagement (Secretaría de
chung der seismologischen Aktivitäten. Sie             Gestión de Riesgos) behördlich vorgeschrieben
sind mit Infraschall-Sensoren (nicht im Obser-         ist. Der Notfallrucksack enthält neben Wasser,
vatorium Guagua Pichincha) sowie Neigungs-             Keksen, Thunfisch auch eine Taschenlampe und
messern,     elektronischen       Distanzmessern       ein Radio mit Batterien. Das Secretaria de Ge-
(EDM) und GPS-Geräten zur Überwachung der              stión de Riesgos stellt für die Bevölkerung eben-
Deformation der Erdoberfläche ausgerüstet.             falls Prospekte zur Verfügung, die Handlungsan-
Darüber hinaus werden regelmäßig geochemi-             weisungen für den Ernstfall geben. In der Regel
sche Überwachungen von Fluiden, Überwa-                sind sie im Comic-Design gestaltet, um insbe-
chungen von Schlamm- und/oder Lavaströmen              sondere Kinder anzusprechen. Diese Prospek-
sowie von pyroklastischen Strömen (ebenfalls           te sind aber nicht überall erhältlich und somit
nicht beim Guagua Pichincha) durchgeführt.             nicht für jeden zugänglich. In Ecuador existiert
   In Ecuador existieren derzeit unterschiedli-        ein öffentliches, vierstufiges Warnsystem, das
che Präventionsmaßnahmen der Katastrophen-             mit den Farben (weiß, gelb, orange und rot) ar-
vorsorge. In einigen Städten (u.a. in Quito, San-      beitet. Die jeweils aktuell ausgerufene Warn-
golquí) sind Warnschilder aufgestellt, auf denen       stufe wird sowohl über die Medien als auch
Fluchtwege und -orte beschrieben sind. Einige          über aufgestellte Schilder in der Bevölkerung
dieser Schilder sind allerdings nicht richtig posi-    verbreitet (vgl. Otto et al. 2019).

                                                                                                            OTTO ET AL.
                                                                                                            ZGD 3•20

                                                                               Fig. 1. Lage der Vulka-
                                                                               ne Cotopaxi und Tun-
                                                                               gurahua in den ecua-
                                                                               dorianischen Anden
                                                                               (Quelle: Otto et al.
                                                                               2019).
Zeitschrift für Geographiedidaktik Journal of Geography Education
2.3 Fachdidaktischer Forschungsstand

Derzeit liegen international und national nur
                                                 oder haben sie mit ihren Eltern oder Freunden
                                                 auch persönlich aufgesucht und/oder bestie-
                                                 gen. Die Autoren gingen deshalb vor der Erhe-
                                                                                                     106
wenige empirische Untersuchungen zu Vor-         bung von folgenden Überlegungen aus:
stellungen und zum Wissen von Schülerinnen          (1) Da Ecuador im Hinblick auf seinen Vulka-
und Schülern bzw. Studentinnen und Studen-          nismus ein Hochrisikoland ist, werden die
ten über Vulkane/Vulkanismus vor. Unseren           meisten Kinder bereits vor ihrer Schulzeit im
Recherchen zufolge beschäftigt sich nur die         Elternhaus und im Kindergarten über den
Untersuchung von Carlino et al. (2008) expli-       Aufbau und die Entstehung von Vulkanen
zit mit dem genannten Thema. Beispielsweise         informiert bzw. aufgeklärt. Deshalb wissen
konstatieren Carlino et al. (2008) mangelhaf-       viele Schülerinnen und Schüler auch vor
te Wissensbestände bei Schülerinnen und             der unterrichtlichen Auseinandersetzung
Schülern hinsichtlich des Verhaltens beim           mit dieser Thematik, wie Vulkane aufgebaut
Ausbruch des Vesuvs. Aktuell liegt unseres          sind und wie Vulkane entstehen.
Wissens jedoch keine Studie vor, die Wissen         (2) Die Schülerinnen und Schüler in Quito,
zur Entstehung und zum Aufbau von Vulkanen          die in unmittelbarer Nähe vom Cotopaxi
untersucht und die räumliche Lage von Schul-        leben, werden von den Eltern und im Kin-
standorten als Untersuchungsparameter ein-          dergarten umfangreicher und differenzier-
bezieht, um mögliche räumliche Differenzen          ter über den Aufbau und die Entstehung
zu untersuchen. Hier setzt die aktuelle Studie      von Vulkanen informiert als diejenigen in
an.                                                 Guayaquil, wo es keine aktiven Vulkane in
                                                    der näheren Umgebung gibt. Deshalb ist
Ausgewählte Leitfragen                              anzunehmen, dass das Wissen der Schüle-
Für diese zweite Teilstudie wurden folgende         rinnen und Schüler über den Aufbau und
Leitfragen aus der Gesamtstudie ausgewählt:         die Entstehung von Vulkanen in Quito um-
    (1) Welches Wissen besitzen die Schülerin-      fassender und differenzierter ist, als bei de-
    nen und Schüler der Deutschen Schulen in        nen in Guayaquil.
    Quito und Guayaquil über den Aufbau ei-         (3) Bei den Jugendlichen (Klasse 12) fallen
    nes typischen Vulkans?                          die Erhebungsergebnisse aufgrund der
    (2) Welches Wissen haben Schülerinnen           mehrfachen unterrichtlichen Auseinander-
    und Schüler der Deutschen Schulen in            setzung in der gymnasialen Mittelstufe und
    Quito und Guayaquil über die Entstehung         des höheren Lebensalters besser aus als
    von Vulkanen/Vulkanismus?                       bei den Kindern (Klasse 6). Dieses Ergeb-
    (3) Werden das Wissen über den Aufbau           nis ist eigentlich zu erwarten, weil die
    und die Entstehung von Vulkanen vom             Schülerinnen und Schüler der 12. Klasse
    Faktor Alter, Schulausbildung und/oder          laut den gültigen Lehrplänen mehrfach
    vom Faktor Schulstandort beeinflusst?           während ihrer Schullaufbahn mit dem Auf-
Viele Kinder und Jugendliche in Ecuador ken-        bau und der Entstehung von Vulkanen/Vul-
nen Vulkane aus persönlicher Anschauung und/        kanismus konfrontiert wurden (vgl. Kap. 3).

3. Das Thema Vulkanismus/Vulkane in den Lehrplänen der
Deutschen Schulen in Quito und Guayaquil
                                                                                                      OTTO ET AL.

Das Thema Vulkane/Vulkanismus ist in den         deutig um den Zusammenhang von Vulkanen
Lehrplänen der Deutschen Schulen sowohl in       und Energie. Hier wird thematisiert, welche
Guayaquil als auch in Quito aufgeführt.          Wärmeenergie von Vulkanen und anderen
   Im Lehrplan Ciencias Naturales (Integrati-    Körpern erzeugt wird.
onsfach: Physik, Chemie, Geologie und Astro-        In der 8. Klasse wird das Thema Vulkane/Vul-
nomie) für die gymnasiale Mittelstufe an der     kanismus zum zweiten Mal behandelt. Wieder-
Deutschen Schule in Guayaquil ist in der 6.      um innerhalb des Themenfeldes 1 Die Erde –
                                                                                                      ZGD 3•20

Klasse im Themenfeld 1 Die Erde – ein Planet     ein Planet mit Leben wird der vulkanische Ur-
mit Leben erstmals der Begriff Vulkane/Vulka-    sprung der Galápagos-Inseln untersucht.
nismus zu finden (vgl. Ministerio de                In der 9. Klasse werden in der Deutschen
Educación 2014). Allerdings geht es hier ein-    Schule in Guayaquil im Themenfeld 2 Der Bo-
Zeitschrift für Geographiedidaktik Journal of Geography Education
den und seine Unregelmäßigkeiten die physi-
kalischen und chemischen Eigenschaften vul-
kanischer Böden behandelt.
                                                  Natur-, Lebens- und Wirtschaftsräume in Euro-
                                                  pa setzen sich die Schülerinnen und Schüler
                                                  u.a. auch mit Naturereignissen und Naturkata-
                                                                                                      107
    Im Lehrplan für Ciencias Naturales für die    strophen 1 in Europa auseinander (vgl.
gymnasiale Oberstufe (Klasse 10 bis 12) an        Deutsche Schule Quito 2012b). Dies erfolgt
der Deutschen Schule in Guayaquil ist das         am Beispiel des Ätna und/oder Vesuv. In der 9.
Thema Vulkane/Vulkanismus als optionales          Klasse wird das Thema Vulkane/Vulkanismus
Thema ausgewiesen (vgl. Bachillerato              schließlich zum dritten Mal Unterrichtsgegen-
Internacional 2014). Dabei geht es inhaltlich     stand. Das Rahmenthema heißt hier Entwick-
vor allem um die Themen Vulnerabilität und        lung und Struktur der Lithosphäre (vgl.
Resilienz. Ob sich die in Guayaquil befragten     Deutsche Schule Quito 2012b). Dabei wer-
Schülerinnen und Schüler der gymnasialen          den folgende Aspekte untersucht:
Oberstufe in diesem Zusammenhang noch-                (1) Vulkantypen (Schild- und Schichtvulkane),
mals mit dem Thema Vulkane/Vulkanismus                (2) Vulkanismus (Klassifizierung nach Aus-
auseinandergesetzt haben, ist nicht erhoben           bruchstypen),
worden, sodass hierzu keine näheren Ausfüh-           (3) Vulkanismus in Ecuador,
rungen gemacht werden können.                         (4) Vulkane – Fluch oder Segen?
    In der Deutschen Schule in Quito werden       Im Lehrplan Geographie für die gymnasiale
Schülerinnen und Schüler der sogenannten          Oberstufe (Klasse 10 bis 12) in den Deutschen
Deutschen Klassen erstmals im zweiten Schul-      Klassen in Quito wird das Thema Vulkane/Vulka-
halbjahr der Klasse 6 mit dieser Thematik kon-    nismus nicht explizit erwähnt. Deshalb kann
frontiert (vgl. Deutsche Schule Quito 2012a).     davon ausgegangen werden, dass in diesen Klas-
Dann steht unter dem Rahmenthema Ausge-           sen kein weiterer Unterricht darüber stattfindet.
wählte Natur-, Lebens- und Wirtschaftsräume           An der durchgeführten Gesamtstudie nah-
in den Großlandschaften Deutschlands u.a.         men keine Schülerinnen und Schüler der soge-
die Vulkaneifel auf der Agenda. Wie intensiv      nannten Nationalen Klassen der Deutschen
und differenziert dabei das Phänomen Vulka-       Schule in Quito teil. Deshalb kann an dieser
ne/Vulkanismus bearbeitet wird, ist dem Lehr-     Stelle auf die Beschreibung der hier geltenden
plan nicht zu entnehmen. In der 7. Klasse wird    Lehrpläne, die sich von denen der Deutschen
das Thema Vulkane/Vulkanismus zum zweiten         Klassen unterscheiden, verzichtet werden.
Mal behandelt. Innerhalb des Rahmenthemas

4. Stichprobe und Methodik

Das Befragungsdesign der vorliegenden Teil-       den von drei Gutachtern systematisch ausge-
studie umfasst insgesamt vier verschiedene        wertet. Die Gutachter stellten unabhängig
Aufgaben, mit denen das Wissen von Schüle-        voneinander die Anzahl der erreichten Punkte
rinnen und Schülern zum Aufbau und zur Ent-       in jeder Zeichnung fest, wobei ein Punkt ei-
stehung von Vulkanen gemessen wurde. So-          nem bestimmten Wissenselement entsprach.
wohl zum Aufbau als auch zur Entstehung von       Nach dem vordefinierten Punkteschema
Vulkanen wurden zwei ähnliche Aufgabenpa-         konnten bei der Zeichnung zum Vulkanaufbau
kete konzipiert. Diese umfassten zwei anzufer-    max. 12 Punkte erreicht werden (vgl. Fig. 2).
                                                                                                       OTTO ET AL.

tigende Zeichnungen sowie zwei Wissensab-             Bei der zweiten anzufertigenden Zeich-
fragen mittels ankreuzbaren Items (Kontrollfra-   nung zur Vulkanentstehung wurde in dersel-
gen). Während die Zeichnungen auch zeich-         ben Weise verfahren. Hier waren maximal
nerisch-motorische Fähigkeiten verlangten,        neun Punkte möglich. Der Einsatz von drei un-
beschränkten sich die Ankreuzaufgaben auf         abhängigen Gutachtern bewirkte eine deutli-
die Auswahl bzw. Einordnung (richtig vs.          che Verminderung subjektiver Einflüsse bei
falsch) von Aussagen und Skizzen.                 der Ergebnisauswertung. Im Anschluss wurde
                                                                                                       ZGD 3•20

    Die Schülerinnen und Schüler wurden zu-       die erreichte Punktzahl (multipliziert mit 100)
nächst gebeten, eine Zeichnung von einem ty-      mit der maximal erreichbaren Punktzahl ins
pischen Vulkan anzufertigen (Zeichnung 1).        Verhältnis gesetzt. Die ermittelte Rate in Pro-
Die von ihnen realisierten Zeichnungen wur-       zent (im Folgenden als Trefferrate bezeichnet)
Zeitschrift für Geographiedidaktik Journal of Geography Education
wurde schließlich in das Statistikprogramm
SPSS eingegeben.
    Aspekte und Probleme, die sowohl bei der
                                                    ausgeschlossen, die eine Trefferrate von 0% er-
                                                    zielten. Insgesamt nahmen an den Deutschen
                                                    Schulen in Quito und Guayaquil 130 Schülerin-
                                                                                                       108
Erstellung von Schülerzeichnungen als auch          nen und Schüler teil. Von den insgesamt 130
bei deren Auswertung Berücksichtigung fin-          angefertigten Zeichnungen waren elf unleser-
den sollten, sind bei Schuler (2015) ausführ-       lich und deshalb nicht auswertbar. Die Kontroll-
lich beschrieben, sodass an dieser Stelle auf       fragen 1 und 2 konnten dagegen von allen 130
deren Darstellung verzichtet werden kann.           Probanden ausgewertet werden.
    Die angekreuzten Items der Kontrollfragen           Über die zuvor beschriebenen strukturprü-
1 und 2 wurden ebenfalls nach einem Punkte-         fenden Datenanalysen hinaus umfasste die
schema bewertet (ein Punkt für jede richtige        Auswertung dieser zweiten Teilstudie auch de-
Antwort). Anschließend wurden auch hier für         skriptive Analysen. Diese bezogen sich insbe-
alle Schülerinnen und Schüler individuelle Tref-    sondere auf die Zeichnungen zum Vulkanauf-
ferraten berechnet und in SPSS eingetragen.         bau und zur Vulkanentstehung. Aus den Daten-
Auf diese Weise wurde für alle vier Aufgaben        analysen ließen sich Häufigkeiten zu identifi-
und jeden Probanden eine Trefferrate be-            zierten Vulkantypen bestimmen sowie idealty-
stimmt. Diese diente als (metrisch skalierte) ab-   pische Visualisierungen entstehender und ent-
hängige Variable in statistischen Auswertun-        standener Vulkane ableiten. Diese zusätzlichen
gen mittels 2x2-Varianzanalysen. Die ANOVAs         Betrachtungen lieferten ergänzende Erkennt-
enthielten     die    Zwischensubjektfaktoren       nisse für die Einordnung der Ergebnisse aus
SCHULSTANDORT und JAHRGANGSSTUFE                    den Varianzanalysen. Es sei darauf hingewie-
mit ihren jeweils zwei Bedingungen (JAHR-           sen, dass den Auswertungen der Zeichnungen
GANGSSTUFE: Klasse 6 vs. Klasse 12; SCHUL-          weniger Aussagekraft beigemessen wurde als
STANDORT: Quito vs. Guayaquil). In jeder Ana-       den strukturprüfenden statistischen Verfahren
lyse wurden die Daten derjenigen Probanden          zu den schriftlichen Wissensabfragen.

                                                                                                        OTTO ET AL.
                                                                                                        ZGD 3•20

                                                                           Fig. 2. Auswertungs-
                                                                           schema für die Zeich-
                                                                           nung 1 über den Auf-
                                                                           bau und Ausbruchssze-
                                                                           narien von Vulkanen
                                                                           (Quelle: Autoren).
Zeitschrift für Geographiedidaktik Journal of Geography Education
5. Ergebnisse
                                                                                                        109
Die statistischen Analysen führten zu nachfol-     p = 0,877; η² < 0,001). Fig. 3 veranschaulicht die
gend beschriebenen Resultaten. Die aufge-          (nicht signifikante) Mittelwertverteilung.
führten Werte, die sich aus den Varianzanalysen
ergaben, werden jeweils auch in Form von Bal-      5.2 Schülerwissen zum Aufbau von
kendiagrammen visuell dargestellt.                 Vulkanen (Kontrollfrage 1)

5.1 Schülerwissen zum Aufbau von                   Die Varianzanalyse (ANOVA) zeigte weder ei-
Vulkanen (Zeichnung 1)                             nen signifikanten Haupteffekt für JAHRGANGS-
                                                   STUFE (F(1; 125) = 2,222; p = 0,139; η² = 0,017)
Die Varianzanalyse (ANOVA) zeigte weder ei-        noch für SCHULSTANDORT (F(1; 125) = 1,941;
nen signifikanten Haupteffekt für JAHRGANGS-       p = 0,166; η² = 0,015). Fig. 4 veranschaulicht die
STUFE (F(1; 122) = 2,702; p = 0,103; η² = 0,022)   (nicht signifikante) Mittelwertverteilung.
noch für SCHULSTANDORT (F(1; 122) = 0,024;

                                                                            Fig. 3. Wissen der
                                                                            Schülerinnen und
                                                                            Schüler der 6. und 12.
                                                                            Klassen der Deutschen
                                                                            Schulen in Quito und
                                                                            Guayaquil zum
                                                                            Vulkanaufbau
                                                                            (Zeichnung 1)
                                                                            (Mittelwertverteilung)
                                                                            (Quelle: Autoren).

                                                                            Fig. 4. Wissen der
                                                                            Schülerinnen und
                                                                            Schüler der 6. und 12.
                                                                                                         OTTO ET AL.

                                                                            Klassen der Deutschen
                                                                            Schulen in Quito und
                                                                            Guayaquil zum
                                                                            Vulkanaufbau
                                                                            (Kontrollfrage 1)
                                                                            (Mittelwertverteilung)
                                                                            (Quelle: Autoren).

5.3 Deskriptive Analyse von Zeichnungen            der 6. Klasse in Quito (a) und Guayaquil (b) so-
                                                                                                         ZGD 3•20

zum Vulkanaufbau                                   wie der 12. Klasse in Quito (c) und Guayaquil
                                                   (d) zum Vulkanaufbau dar. Bei den Zeichnun-
Fig. 5 stellt ausgewählte, typische Zeichenbei-    gen 4a und 4b ist deutlich zu erkennen, wie
spiele der befragten Schülerinnen und Schüler      stark die motorischen Zeichenfähigkeiten der
Zeitschrift für Geographiedidaktik Journal of Geography Education
Schülerinnen und Schüler der 6. Klasse variie-
ren. Beide Zeichner malten einen Schicht- bzw.
Stratovulkan. Während der Zeichner aus Quito
                                                        haben die Jugendlichen jeweils einen Strato-
                                                        vulkan gemalt. Im Vergleich zu den Zeichnun-
                                                        gen der Kinder sind diese beiden Bilder aber
                                                                                                             110
einen Schichtvulkan mit Lava gefüllten Schlot           sehr viel detaillierter. Denn hier werden neben
kreierte (vgl. Fig. 5a), stellte der Zeichner aus       dem eigentlichen Vulkangebäude zusätzlich
Guayaquil lediglich ein Vulkangebäude dar,              Ausbruchsszenarios dargestellt. In einer Zeich-
das keinerlei weitere Differenzierung enthält           nung findet sich das Wort Schnee (vgl. Fig. 5c),
(vgl. Fig. 5b).                                         in der anderen ist ein Gletscher auf der Kuppe
   Auch die Schülerinnen und Schüler der 12.            angedeutet (vgl. Fig. 5d).
Klassen verfügen über unterschiedliche Zei-                 Von den Kindern der 6. Klassen in Quito zeich-
chenkünste (vgl. Fig. 5c und Fig. 5d). Auch hier        neten 91,4% einen Stratovulkan und von denen

                                                                                Fig. 5. Zeichnungen
                                                                                zum Vulkanaufbau von
                                                                                Schülerinnen und
                                                                                Schülern der
                                                                                Deutschen Schulen
                                                                                der 6. Klasse in Quito
                                                                                (a) und Guayaquil (b)
                                                                                sowie der 12. Klasse in
                                                                                Quito (c) und
                                                                                Guayaquil (d) (Quelle:
                                                                                Autoren)

                                                                                Fig. 6. Häufigkeit der von
                                                                                den Schülerinnen und
                                                                                Schülern der 6.und 12.
                                                                                Klassen der Deutschen
                                                                                Schulen in Quito und
                                                                                Guayaquil gezeichneten
                                                                                Vulkantypen (in %)
                                                                                (Quelle: Autoren).
                                                                                                              OTTO ET AL.

                                                                                Fig. 7. Häufigkeit der von
                                                                                den Schülerinnen und
                                                                                Schülern der 6.und 12.
                                                                                Klassen der Deutschen
                                                                                Schulen in Quito und
                                                                                Guayaquil identifizierten
                                                                                Vulkantypen(in%)
                                                                                (Quelle: Autoren).
                                                                                                              ZGD 3•20

in Guayaquil 90% (vgl. Fig. 7). In Quito malten so-     verbreitete Vulkantypen kennengelernt haben (vgl.
gar alle Jugendlichen der 12. Klassen einen Strato-     Kap. 3).
vulkan, obschon sie in der 9. Klasse sowohl den            Auch die Jugendlichen in Guayaquil haben in
Schicht- als auch den Schildvulkan als weltweit weit-   der 8. Klasse im Fach Ciencias Naturales mit hoher
Wahrscheinlichkeit die für die Galápagos-Inseln ty-
pischen Schildvulkane kennengelernt. Dennoch
ist dieser Vulkantyp ebenso wie in Quito von kei-
                                                          STUFE (F(1; 122) = 9,593; p = 0,002; η² =
                                                          0,073) und SCHULSTANDORT (F(1; 122) =
                                                          6,247; p = 0,014; η² = 0,049). Die Analyse of-
                                                                                                             111
nem Lernenden (0%) gezeichnet worden.                     fenbarte zudem eine signifikante JAHR-
                                                          GANGSSTUFE*SCHULSTANDORT-Interakti-
5.4 Schülerwissen zur Entstehung von                      on (F(1; 122) = 5,282; p = 0,023; η² = 0,041).
Vulkanen (Zeichnung 2)                                       Paarweise Vergleiche (t-tests für unab-
                                                          hängige Stichproben) verdeutlichten, dass
Die Varianzanalyse (ANOVA) zeigte einen signifikan-       die Schülerinnen und Schüler der JAHR-
ten Haupteffekt für JAHRGANGSSTUFE (F(1; 98) =            GANGSSTUFE 12 am SCHULSTANDORT
7,736; p = 0,006; η² = 0,073) und SCHULSTANDORT           Quito signifikant höhere Trefferraten er-
(F(1; 98)=12,553;p =0,001;η² =0,114).DieAnalyse           zielten als die Probanden aller anderen
offenbarte zudem eine signifikante JAHRGANGS-             Klassen (alle p’s < 0,001). Fig. 15 visualisiert
STUFE*SCHULSTANDORT-Interaktion (F(1; 98) =               die signifikante Mittelwertverteilung.
9,538; p = 0,003; η² = 0,089) (vgl. Fig. 14).                Die Kontrollfrage spiegelt auch hier die Er-
    Fig.13 gleicht vielenAbbildungen eines Stratovul-     gebnisse der Zeichenaufgabe wider (vgl. Kap.
kans in ecuadorianischen Veröffentlichungen. Ge-          5.4). Die Schülerinnen und Schüler der 12.
genüber real existierenden Stratovulkanen ist die         Klassen in Quito besitzen ein signifikant höhe-
Steilheit der Flanken aber tendenziell zu groß, vor al-   res Wissen zur Vulkanentstehung als alle an-
lem im Vergleich zur Zeichnung der Defensa Civil          deren Befragten an beiden Schulstandorten.
oder zum Cotopaxi (vgl. Fig. 12 und Fig. 13).             Bemerkenswert ist auch hier, dass im Gegen-
                                                          satz dazu das Wissen der Oberstufenschüler
5.5 Schülerwissen zur Entstehung von                      der Deutschen Schule in Guayaquil nur un-
Vulkanen (Kontrollfrage 2)                                wesentlich höher ist, als das der Kinder der 6.
                                                          Klassen in Quito und Guayaquil, obwohl sie
Die Varianzanalyse (ANOVA) zeigte einen si-               deutlich mehr Schul- und Lebenserfahrung
gnifikanten Haupteffekt für JAHRGANGS-                    haben.

                                                                                 Fig. 8. Idealtypische
                                                                                 Stratovulkane nach
                                                                                 den Zeichnungen der
                                                                                 Schülerinnen und
                                                                                 Schüler der Deutschen
                                                                                 Schulen der 6. Klasse
                                                                                 in Quito (a) und
                                                                                 Guayaquil (b) (Quelle:
                                                                                 Autoren).
                                                                                                              OTTO ET AL.

                                                                                 Fig. 9. Idealtypische
                                                                                 Stratovulkane nach
                                                                                 den Zeichnungen der
                                                                                                              ZGD 3•20

                                                                                 Schülerinnen und
                                                                                 Schüler der Deutschen
                                                                                 Schulen der 12. Klasse
                                                                                 in Quito (a) und
                                                                                 Guayaquil (b) (Quelle:
                                                                                 Autoren).
112
Fig. 10. Vergleich der
von den Schülerinnen
und Schülern der
Deutschen Schulen
der 6. und 12. Klasse
in Quito und Guaya-
quil gezeichneten
Vulkangebäude
(Quelle: Autoren).

Fig. 11. Idealtypischer
Stratovulkan nach den
Vorstellungen aller
Schülerinnen und
Schüler der Deutschen
Schulen der 6. und 12.
Klassen der Deutschen
Schulen in Quito und
Guayaquil (Quelle:
Autoren).

Fig. 12. Darstellung
eines Stratovulkans
aus einem Faltblatt der
Defensa Civil (Quelle:
www.comminit.com/
gestion-del-riesgo/).
                             OTTO ET AL.
                             ZGD 3•20

Fig. 13. Stratovulkan
Cotopaxi (5897 m)
(Quelle: T. Toulkeridis).
113

Fig. 14. Wissen der
Schülerinnen und
Schüler der Deutschen
Schulen in Quito und
Guayaquil zur Vulkan-
entstehung (Zeich-
nung 2) (Mittelwertver-
teilung) (Quelle: Autoren).

Fig. 15. Wissen der
Schülerinnen und
Schüler der 6. und 12.
Klassen der Deutschen
Schulen in Quito und
Guayaquil zur Vulkan-
entstehung (Kontroll-
frage 2) (Mittelwertver-
teilung) (Quelle: Autoren).

                               OTTO ET AL.

Fig. 16. Ausgewählte
Zeichnungen zur Vul-
kanentstehung von
Schülerinnen und
Schülern der Deut-
schen Schulen der 6.
                               ZGD 3•20

Klassen in Quito (a)
und Guayaquil (b)
sowie der 12. Klassen
in Quito (c) und
Guayaquil (d) (Quelle:
Autoren).
6. Diskussion
                                                                                                       114
Die Untersuchungen im Rahmen dieser Teil-             ein Berg mit Schnee auf dem Gipfel kein
studie konzentrierten sich im Wesentlichen            Vulkan sein kann (vgl. Libarkin et al. 2005;
auf das Wissen der befragten Schülerinnen             Libarkin 2006; Parham Jr. et al. 2010).
und Schüler zum Aufbau sowie zur Entstehung           (2) Die Kinder und Jugendlichen stellen
von Vulkanen/Vulkanismus. Darüber hinaus              sich Vulkane in der Regel eher als Strato-
wurde der Einfluss der Nähe des Schulstand-           vulkane vor (vgl. Fig. 6). Dies ist bei den
orts zu einem Hochrisikovulkan mit in die Ana-        Schülerinnen und Schülern in Quito nicht
lyse aufgenommen.                                     ungewöhnlich, da sie in sichtbarer Nähe
Die Ergebnisse der statistischen Analysen die-        des Cotopaxi leben, der zu den prägnan-
ser Teilstudie zeigen, dass das Wissen über           testen Stratovulkanen der Erde gehört. In
Vulkanen/Vulkanismus sowohl von der Jahr-             Guayaquil und Umgebung gibt es keine
gangsstufe der Schülerinnen und Schüler als           Stratovulkane. Der nächste liegt viele Kilo-
auch vom Schulstandort beeinflusst werden             meter weit entfernt. Auch für die Jugendli-
kann. Dabei ist zwischen verschiedenen As-            chen der 12. Klassen in Guayaquil scheint
pekten des Themas Vulkane/Vulkanismus zu              ein Stratovulkan das typische Vulkange-
differenzieren:                                       bäude zu sein (87,9%).
                                                      (3) Die Kinder und auch die Jugendlichen
Aus der durchgeführten Erhebung kann einer-           in Quito und Guayaquil haben sehr ähnli-
seits abgeleitet werden, dass das Wissen zum          che Vorstellungen vom Aufbau eines Stra-
Aufbau eines Vulkans keine grundsätzlichen            tovulkans. Beim direkten Vergleich der er-
Unterschiede aufweist (vgl. Fig. 3 und Fig. 4).       mittelten Idealtypen fällt auf, dass nur die
Weder die unterrichtliche Behandlung des              Schülerinnen und Schüler der 6. Klasse in
Themas in der Mittelstufe (vgl. Kap. 3) noch          Quito hinsichtlich der Höhe und der Flan-
der Schulstandort – mit unterschiedlicher na-         kenneigungen deutlicher von denen der
turräumlicher Distanz zu Hochrisikovulkanen,          anderen Zeichner abweichen (vgl. Fig. 10).
wie beispielsweise dem Cotopaxi in der Nähe        Die Ergebnisse der Kontrollfrage 1 lassen fol-
Quitos – führen zu einem höheren Wissen. Es        gende Schlussfolgerungen zu:
scheint, als gäbe es innerhalb Ecuadors einen         (1) Schlackenkegel sind kegelförmige, rela-
einheitlichen und nur schwierig beeinflussba-         tiv ebenmäßige Vulkane, deren abge-
ren Wissensstandard zum Aufbau von Vulka-             stumpfte Spitze häufig kraterförmig einge-
nen. Besonders auffällig ist zudem, dass – un-        senkt sind (vgl. Schmincke 2013). Damit
abhängig vom räumlichen Schwerpunkt auf               ähneln sie einem Stratovulkan, bei dem
den Galápagos-Inseln im Curriculum der                bei einer Eruption die Kegelspitze wegge-
Deutschen Schule in Guayaquil – Schülerinnen          sprengt wurde. Dies könnte der Grund da-
und Schüler mit Vulkanen in erster Linie Strato-      für sein, dass die Kinder und Jugendlichen
vulkane und nicht Schildvulkane assoziieren           neben dem Stratovulkan (67,4%) auch die-
(vgl. Fig. 6). Offenbar prägt das Bild der be-        ses Vulkangebäude (67,4%) sehr häufig
kanntesten ecuadorianischen Stratovulkane,            richtig angekreuzt haben (vgl. Fig. 7).
des Cotopaxi und Chimborazo, das Schüler-             (2) Der Lavadom und die Caldera wurden
                                                                                                        OTTO ET AL.

wissen (vgl. Fig. 13).                                nur von wenigen Probanden angekreuzt
   Aus den Ergebnissen der Zeichnungen zum            (vgl. Fig. 7). Dies ist nicht unerwartet, weil
Vulkanaufbau ergeben sich folgende Aspekte:           diese Vulkantypen weniger häufig sind
    (1) In der Zeichnung eines Oberstufenschü-        und zudem komplexere Vulkangebäude
    lers findet sich das Wort Schnee (vgl. Fig.       darstellen. Da sowohl die Oberstufen-
    5c), in einer anderen ist ein Gletscher auf       schüler in Quito als auch in Guayaquil im
    der Kuppe angedeutet (vgl. Fig. 5d). Dieses       Schulunterricht – laut geltenden Lehrplä-
                                                                                                        ZGD 3•20

    Ergebnis widerspricht den Resultaten ande-        nen – die Vulkantypen Schild- und
    rer Studien (bei denen allerdings Studentin-      Schichtvulkan bzw. die Galápagos-Inseln
    nen und Studenten befragt wurden), dass           mit den dortigen Schildvulkanen behan-
delt haben müssten, ist ihre Identifikation
    nur relativ wenigen Probanden gelungen
    (26,3% bzw. 25,8%) (vgl. Kap. 3).
                                                     stufenschülerinnen und Oberstufenschülern
                                                     erklären. Die Sichtbarkeit sowie die reale und
                                                     mediale Präsenz des Cotopaxi in der Nähe
                                                                                                        115
Das Wissen über die Entstehung von Vulkanen          Quitos mag Schülerinnen und Schüler anre-
wird von der Jahrgangsstufe und dem Schul-           gen, bis zum Erwachsenenalter Entstehungs-
standort gesteuert (vgl. Fig. 14 und Fig. 15). Ob-   prozesse von Vulkanen, die für den Raum um
wohl an beiden Standorten der Studie (Quito          den Schulstandort zweifelsohne eine Alltags-
und Guayaquil) die Lehrpläne der Mittelstufe         gefahr darstellen, intensiver zu verinnerlichen.
eine ähnliche Behandlung des Themas Vulka-           Die Ergebnisse dieser Studie sind – in Ansät-
nismus vorsieht (vgl. Kap. 3), ist ein eindeutig     zen – vergleichbar mit Erkenntnissen, die
höheres Wissen bei den Oberstufenschülern            Carlino et al. (2008) aus einer empirischen
in Quito gegenüber denen in Guayaquil fest-          Erhebung ableiteten. In dieser Studie wurden
zustellen. Dieser mag mit unterschiedlicher          mangelhafte Wissensbestände bei Schülerin-
Unterrichtsintensität und -qualität zusammen-        nen und Schülern hinsichtlich des Verhaltens
hängen, jedoch sind auch außerschulische             beim Ausbruch des Vesuvs eruiert. Auch in der
Einflüsse als Gründe denkbar. Die Nähe zum           hier ausgewerteten Teilstudie deuten sich Ver-
(Hochrisiko-)Vulkan, die bereits in der voraus-      besserungspotenziale sowie regionale Dispa-
gehenden ersten Teilstudie (vgl. Otto et al.         ritäten beim Wissen über vulkanologische
2019) als Begründung für Wissensdifferenzen          Themen an (vgl. Otto et al. 2019; zum Thema
zu Vulkanen/Vulkanismus in Ecuador vermutet          Wissen über Tsunamis vgl. Edler et al. 2020).
wurde, kann dieses höhere Wissen bei Ober-

7. Reflexion der Untersuchung

Bereits die Ausführungen von Schuler (2015)          ten jedoch ein Kontrollinstrument, durch das die
zeigten, dass die Erstellung von thematischen        Robustheit von Effekten aus den erzielten Er-
Bildern von Schülerinnen und Schülern sehr un-       gebnissen untermauert werden konnte.
terschiedlich gemeistert werden. Dies wurde          Die Ergebnisse dieser zweiten Studie beziehen
durch die vorliegende Studie bestätigt. Es gibt      sich ausschließlich auf die Deutschen Schulen
Lernende, die sehr präzise und detailreich zeich-    in Quito und Guayaquil. Diese gehören zu den
nen, andere besitzen in dieser Hinsicht dagegen      Eliteschulen Ecuadors. Insofern können die
nur sehr eingeschränkte Talente. Auch die Aus-       hier erzielten Resultate nur eingeschränkt –
wertung von Schülerzeichnungen birgt oftmals         wenn überhaupt – auf die Schülerinnen und
Probleme, die es zu minimieren galt. Die zusätz-     Schüler der staatlichen Schulen im Land über-
lich im Messinstrument eingesetzten Fragen bo-       tragen werden (s.u.).

8. Ausblick

Innerhalb einer umfangreichen Gesamtstudie           d.h. im Einflussbereich des Cotopaxi, signifi-
zeigen – gemeinsam mit den neben bereits             kant besser beantworten.
                                                                                                         OTTO ET AL.

kürzlich veröffentlichten Ergebnissen einer              Weitere Teilstudien der Gesamtstudie sollen
ersten Teilstudie (vgl. Otto et al. 2019) – die      zukünftig Aufschluss geben, ob auch die geo-
Ergebnisse der vorliegenden Teilstudie, dass         räumliche Lage staatlicher ecuadorianischer
Schülerinnen und Schüler der Deutschen               Schulen zu Vulkanen das Wissen sowie Alltags-
Schulen in Ecuador bei komplexeren Sachver-          vorstellungen von Schülerinnen und Schülern si-
halten zu Vulkanen und Vulkanismus offenbar          gnifikant beeinflusst. Wäre dies der Fall, ließe
durch die räumliche Lage zu bekannten Hoch-          sich der bisher identifizierte Zusammenhang
                                                                                                         ZGD 3•20

risikovulkanen (v.a. Cotopaxi, in der Nähe Qui-      zwischen der Lage zu Vulkanen und Wissensan-
tos) geprägt werden. Wissensabfragen, die            reicherung in erweitertem Maße bestätigen.
sich auf (prozedurales) Wissen konzentrieren,        Entsprechend könnten in weiteren Studien flä-
können Schülerinnen und Schüler in Quito,            chendeckend – und über die Eliteschulen in Qui-
to und Guayaquil hinaus – Empfehlungen für die
Anpassung der Schulcurricula abgeleitet wer-
den, die eine Optimierung nationaler Standards
                                                      Vulkane/Vulkanismus ermöglichen könnten.
                                                      Dies umfasst perspektivisch ebenfalls die Erar-
                                                      beitung von Empfehlungen für die unterrichts-
                                                                                                            116
zum in Ecuador hochrelevanten Bildungsthema           praktische Umsetzung.

Literatur

Aguilera, E., & Dueñas, W. (2007). The Explo-         Duit, R. (2008). Zur Rolle der Schülervorstellungen
  sive Eruptions of the Volcano Tungurahua of            im Unterricht. geographie heute, 265, 2–6.
  July and August 2006. Quito: Proyecto               Edler, D., Otto, K.-H., & Toulkeridis, T. (2020).
  Descentralización y Desarrollo Local.                  Tsunami Hazards in Ecuador - Regional Dif-
Aguilera, E., Pareschi, M.T., Rosi, M., &                ferences in the Knowledge of Ecuadorian
  Zanchetta, G. (2004). Risk from Lahars in              High-School Students. Science of Tsunami
  the Northern Valleys of Cotopaxi Volcano               Hazards, 39, 86–112.
  (Ecuador). Natural Hazards, 33, 161–189.            Egner, H. (2008). Warum konnte das nicht ver-
Baalmann, W., Friederichs, V., Weitzel, H.,             hindert werden? Über den (Nicht-)Zusam-
   Gropengießer, H., & Kattmann, U. (2004).             menhang von wissenschaftlicher Erkenntnis
   Schülervorstellungen zu Prozessen der An-            und politischen Entscheidungen. In C.
   passung – Ergebnisse einer Interviewstudie           Felgentreff & T. Glade (Hg.), Naturrisiken
   im Rahmen der Didaktischen Rekonstrukti-             und Sozialkatastrophen (S. 421–433). Berlin,
   on. Zeitschrift für Didaktik der Naturwissen-        Heidelberg: Springer.
   schaften, 10, 7–28.                                Felgentreff, C., Kuhlicke, C., & Westholt, F.
Bachillerato Internacional (2014). Geografía.            (Hg.) (2012). Naturereignisse und Sozialka-
  (23.09.2020).                                          tastrophen. Forschungsforum Öffentliche Si-
Barberi, F., Coltelli, M., Frullani, A., Rosi, M.,       cherheit, Band 8. Berlin: Springer.
   & Almeida, E. (1995). Chronology and Dis-          Freymuller, J. T., Kellogg, J. N., & Vega, V.
   persal Characteristics of Recently (Last              (1993). Plate Motions in the North Andean
   5,000 Years) Erupted Tephra of Cotopaxi               Region. Journal of Geophysical Research,
   (Ecuador): Implications for Long-Term Erup-           98, 53–64.
   tive Forecasting. Journal of Volcanology           Gropengießer, H., & Marohn, A. (2018). Schü-
   and Geothermal Research, 69, 217–239.                lervorstellungen und Conceptual Change.
Carlino, S., Somma, R., & Mayberry, G. (2008). Vol-     In D. Krüger, I. Parchmann & H. Schecker
   canic Risk Perception of Young People in the         (Hg.), Theorien in der naturwissenschaftsdi-
   Urban Areas of Vesuvius: Comparisons with            daktischen Forschung (S. 49-68). Berlin:
   Other Volcanic Areas and Implications for            Springer.
   Emergency Management. Journal of Volcanol-         IGEPN (Instituto Geofísico de la Escuela
   ogy and Geothermal Research, 172, 229–243.            Politécnica Nacional) (2015a). Daily Re-
Cerca, M., Toulkeridis, T., & Concha-Dimas, A.           ports of Cotopaxi Volcano in 2015 of the In-
  (2005). First Results about the Structural Set-        stituto Geofísico de la Escuela Politécnica
  ting and Emplacement Model of the Co-                  Nacional. (23.09.2020)
                                                                                                             OTTO ET AL.

  topaxi Volcanic Complex, Ecuador. Chap-             IGEPN (Instituto Geofísico de la Escuela
  man Conference on the Effects of Base-                 Politécnica Nacional) (2015b). Special Re-
  ment, Structure, and Stratigraphic Heritages           ports of Cotopaxi Volcano in 2015 of the In-
  on Volcano Behaviour, Tagaytay City, Philip-           stituto Geofísico de la Escuela Politécnica
  pines, 2015, p. 36.                                    Nacional. (http://www.igepn.edu.ec/in-
Deutsche Schule Quito (DSQ) (2012a). Lehr-               formes-volcanicos/cotopaxi/coto-espe-
  plan für das Fach Geographie. Primaria                 ciales/coto-e-2015) (23.09.2020)
                                                                                                             ZGD 3•20

  (23.09.2020).                                       Kattmann, U., Duit, R., Gropengießer, H., &
Deutsche Schule Quito (DSQ) (2012b). Lehr-               Komorek, M. (1997). Das Modell der Didak-
  plan für das Fach Geographie. Secundaria               tischen Rekonstruktion – Ein Rahmen für na-
  (23.09.2020).                                          turwissenschaftsdidaktische Forschung und
Entwicklung. Zeitschrift für die Didaktik der
   Naturwissenschaften, 3, 3–18.
                                                         standing about Volcanoes. Journal of Geo-
                                                         science Education, 58, 177–187. DOI
                                                         10.5408/1.3544298
                                                                                                          117
La Condamine Ch. M. (1751). Diario del Viaje al
   Ecuador, republ. in 1986. Quito: Publitécnica.     Reinfried, S. (2008). Schülervorstellungen und
LePennec, J.-L., Jaya, D., Samaniego, P., van der        Lernen von Geographie. geographie heute,
   Plicht, J., Yepes, H., Hall, M. L.,Ramón, P.,         265/266), 8–12.
   Mothes, P., & Egred, P. J. (2004). A Recon-        Reinfried, S. (2010). Lernen als Vorstellungsän-
   struction of the Historical Eruption of Tungu-        derung: Aspekte der Vorstellungsfor-
   rahua Volcano, Ecuadorian Andes, IAVCEI               schung mit Bezügen zur Geographiedidak-
   General Assembly : Volcanism and its Im-              tik. In S. Reinfried (Hg.), Schülervorstellun-
   pact on Society, Pucón, Chile, 14-                    gen und geographisches Lernen - Aktuelle
   19.11.2004. Pucón: IAVCEI.                            Conceptual-Change-Forschung und Stand
Libarkin, J. C. (2006). College Student Concep-          der theoretischen Diskussion (S. 1–31). Ber-
   tions of Geological Phenomena and Their               lin: Logos Verlag.
   Importance in Classroom Instruction.               Reinfried, S. (2015). Wissen erwerben und Ein-
   Planet, 17, 6–9.                                      stellungen reflektieren. In S. Reinfried & H.
Libarkin, J. C., & Anderson, S. W. (2005). As-           Haubrich (Hg.), Geographie unterrichten
   sessment of Learning in Entry-level Geo-              lernen. Die Didaktik der Geographie (S. 53–
   science Courses: Results from the Geo-                57). Berlin: Cornelsen.
   science Concept Inventory. Journal of Geo-         Schmincke, H.-U. (2013). Vulkanismus. 4. Unver-
   science Education, 53, 394.                           änderte Auflage. Darmstadt: WBG.
Merz, B. (2015). Naturrisiken. In G. Wefer & F.       Schmidt-Wulffen, W. D. (1980). Die Dürre im Sa-
  Schmieder (Hg.), Expedition Erde – Span-               hel – Erscheinungsbild, Ursachen, Auslöser,
  nendes und Wissenswertes aus den Geo-                  Auswirkungen. geographie heute, 1, 24–48.
  wissenschaften (S. 104-107). Bremen:                Schmidt-Wulffen, W. D. (1982). Katastrophen:
  Selbstverlag.                                          Natur- und Sozialkatastrophen. In L. Jander,
Ministerio de Educación (2014). Currículo de             W. Schramke & H.-J. Wenzel (Hg.), Metzler
  EGB y BGU. Ciencias Naturales. Quito:                  Handbuch für den Geographieunterricht.
  Ministerio de Educación (23.09.2020).                  Ein Leitfaden für Praxis und Ausbildung (S.
Mönter, L., & Otto, K.-H. (2017). The Concept of         137–143). Stuttgart: J. B. Metzler.
  Disasters in Geography Education. Journal of        Schuler, S. (2011). Alltagstheorien zu den Ur-
  Geography in Higher Education, 42, 1–15.               sachen und Folgen des globalen Klimawan-
Otto, K.-H. (2009). Von Naturrisiken und Sozi-           dels – Erhebung und Analyse von Schüler-
  alkatastrophen – zur didaktischen Neukon-              vorstellungen aus geographiedidaktischer
  zeption eines traditionellen Themas im                 Perspektive. Bochum: Europäischer Univer-
  Geographieunterricht. Geographie und                   sitätsverlag.
  ihre Didaktik | Journal of Geography Educa-         Schuler, S. (2015). Schülerzeichnungen im Un-
  tion, 37, 29–48.                                       terricht. Wie man geographische Schüler-
Otto, K.-H. (2016). Nach der Katastrophe ist             vorstellungen mit Zeichnungen diagnosti-
  vor der Katastrophe! Zur Bedeutung der                 zieren und verändern kann. Praxis Geogra-
  Katastrophenvorsorge im kompetenzorien-                phie, 45, 9–13.
                                                                                                           OTTO ET AL.

  tierten Geographieunterricht. Geographie            Sodiro L. (1877). Relación Sobre la Erupción
  aktuell und Schule, 38, 13–24.                        del Cotopaxi Acaecida el Día 26 de Junio,
Otto, K.-H., Toulkeridis, T., Zach, I., & Edler, D.     de 1877. Quito: Imprenta Nacional.
  (2019). Eine empirische Studie zum Wissen           Toulkeridis, T. (2006). New, Efficient Educative
  von Schülerinnen und Schülern über aktive              Prevention for Ecuador’s Volcano Cotopaxi.
  Vulkane und Schutzmaßnahmen in Ecuador.                Cities On Volcanoes 4 (COV4), Quito,
  Zeitschrift für Geographiedidaktik | Journal of        Ecuador, May-June 2004. Quito: COV.
                                                                                                           ZGD 3•20

  Geography Education (ZGD), 47, 1–23.                Toulkeridis, T. (2010). Volcanic Hazard Pre-
Parham Jr. T. L., Cervato, C., Gallus Jr W. A., &        paredness in Ecuador. Cities On Volcanoes
   Larsen, M. (2010). The InVEST Volcanic                6 (COV6). Teneriffa, Spain, May-June 2010.
   Concept Survey: Exploring Student Under-              Tnereiffa: COV.
Sie können auch lesen