PRESSEINFORMATION - Deutsche Messe AG
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS PRESSEINFORMATION PRESSEINFORMATION Nr. 09 | 2020 29. September 2020 || Seite 1 | 4 Graphit statt Gold: Dünne Schichten für bessere Wasserstoff-Autos Innovative Beschichtung für Bipolarplatten in Brennstoffzellen (Dresden, 29.09.2020) Elektroautos, die binnen fünf Minuten vollgetankt sind, auf Reichweiten wie ein Diesel kommen und doch »sauber« fahren: Das schaffen mit Wasserstoff betankte Brennstoffzellen-Fahrzeuge bereits heute. Allerdings sind sie bisher noch selten und teuer. Neben Effizienzproblemen liegt das unter anderem an einer Kernkomponente: Goldbeschichtete Bipolarplatten (BiP) in Brennstoffzellen. Sie sind außerdem aufwendig in der Herstellung. Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden, der deutsche Automobilkonzern Daimler und das finnische Stahlunternehmen Outokumpu Nirosta haben nun eine preiswerte Alternative für die schnelle Massenproduktion entwickelt. Wissenschaftler des Fraunhofer IWS haben dafür eine Technologie entwickelt, die auch eine kontinuierliche Produktion von Bipolarplatten ermöglicht. Statt mit Gold beschichtet sie diese hauchdünn mit Kohlenstoff. Dieses Konzept ist massenproduktionstauglich und kann die Fertigungskosten stark reduzieren. Außerdem liefert es einen wichtigen Beitrag zum Bau umweltfreundlicher Fahrzeuge. Brennstoffzellen sind interessante technologische Alternativen zu Batterie- konzepten »Wenn die Automobilindustrie heute von alternativen Antriebskonzepten redet, ist meist das batterieelektrische Fahren gemeint«, erklärt IWS-Leiter Prof. Christoph Leyens. »Für Einsatzszenarien wie zum Beispiel Lastkraftwagen, die eine große Reichweite brauchen, könnten Brennstoffzellen eine interessante technologische Alternative bieten. Deshalb arbeiten wir mit unseren Partnern aus der Wirtschaft eng zusammen, um preisgünstigere und leistungsfähige Brennstoffzellen zu ermöglichen.« »Auch Ingenieure sind Idealisten und deshalb hängen wir an diesem Projekt mit besonderem Herzblut«, betont Dr. Teja Roch vom IWS. »Denn damit liefern wir einen Baustein für eine klimaneutrale Mobilität jenseits der klassischen Verbrennungsmotoren.« Das funktioniere aber nur, wenn sich ein neues Verfahren in der Praxis auch rechnet. »Unsere Technologie hat das Potenzial, die Produktionskosten für Brennstoffzellen spürbar zu senken.« Leiter Unternehmenskommunikation Markus Forytta | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS | Telefon +49 351 83391-3614 | Winterbergstraße 28 | 01277 Dresden | www.iws.fraunhofer.de | markus.forytta@iws.fraunhofer.de Leiter der Projektgruppe im Dortmunder OberflächenCentrum DOC Dr.-Ing. Teja Roch | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS | Telefon +49 231 844 -3894 | Eberhardstr. 12 | 44145 Dortmund | www.iws.fraunhofer.de | teja.roch@iws.fraunhofer.de
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS Wie funktioniert eine Brennstoffzelle? PRESSEINFORMATION Nr. 09 | 2020 Brennstoffzellen funktionieren wie Mini-Kraftwerke: Sie werden mit dem Energieträger 29. September 2020 || Seite 2 | 4 Wasserstoff sowie mit Sauerstoff gespeist und erzeugen daraus in einer chemischen Reaktion Wasser, Strom und Wärme. Dafür kommen unterschiedliche Bauweisen in Betracht. Eine weit verbreitete ist die PEM-Brennstoffzelle. Sie bestehen aus Stapeln (»Stacks«) vieler Einzelzellen, in deren Mitte sich jeweils eine Protonen-Austausch- Membran (englisch: »Proton Exchange Membrane« = PEM) befindet. Rechts und links dieser Membran sind Elektroden mit Katalysatoren, je eine Gasdiffusionslage (GDL) und ganz außen auf beiden Seiten sogenannte Bipolarplatten angeordnet. Durch diese Platten strömen Wasserstoff und Sauerstoff in die Zelle. Sie bestehen aus jeweils zwei Edelstahl-Halbblechen, auf die in einem Umformungsprozess spezielle Strukturen für den Gasfluss und die Wärmeabfuhr geprägt und die dann zusammengeschweißt werden. Weil aber Stahloberflächen Strom nur mäßig gut leiten, werden Bipolarplatten oft mit Gold beschichtet, um Rostbildung zu vermeiden. Vor allem aber sorgt das Edelmetall dafür, dass der Strom gut fließen kann, der Kontaktwiderstand zwischen der Gasdiffusionslage und der Bipolarplatte also gering bleibt. »Allerdings ist Gold bekanntermaßen teuer«, skizziert Teja Roch ein Problem bei dieser oft verwendeten Lösung. »Zudem werden die Edelstahlbleche für die Platten zuerst umgeformt und zusammengeschweißt, um sie dann stapelweise zu beschichten. Das ist ein recht aufwendiger und langwieriger Prozess.« Daher sind die IWS-Forscher und ihre Partner aus der Automobil - und Stahlindustrie im Zuge des vom Bundeswirtschaftsministerium geförderten Verbundprojektes »miniBIP II« neue Wege gegangen: Statt mit Gold beschichten sie die etwa 50 bis 100 Mikrometer (Tausendstel Millimeter) dünnen Stahlbleche mit einer nur wenige Nanometer (Millionstel Millimeter) dünnen graphit-ähnlichen Schicht. Dafür setzen sie die »Physikalische Gasphasenabscheidung« (PVD) ein. Dabei verdampft ein Lichtbogen in einer Vakuumkammer zunächst den Kohlenstoff, der sich dann in einer hochreinen, gleichmäßigen und sehr dünnen Schicht auf dem Edelstahl niederschlägt. Beschichtungskosten halbiert Bereits im Vorserienstadium erreicht diese Kohlenstoffschicht einen ähnlich niedrigen Kontaktwiderstand wie Gold. Anders ausgedrückt: Wenn die Ingenieure ihr Verfahren bis zur Massenproduktion weiter verfeinern, wird ihre Schicht den Strom mindestens Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden steht für Innovationen in der Laser- und Oberflächentechnik. Als Einrichtung der Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. bietet das Institut Lösungen aus einer Hand – von der Entwicklung neuer Verfahren über die Integration in die Fertigung bis hin zur anwendungsorientierten Unterstützung. Die Felder Systemtechnik und Prozesssimulation ergänzen die Kernkompetenzen. Zu den Technologiefeldern des Fraunhofer IWS gehören PVD- und Nanotechnik, Chemische Oberflächentechnik, Thermische Oberflächentechnik, Generieren und Drucken, Fügen, Laserabtragen und -trennen sowie Mikrotechnik. Das Kompetenzfeld Werkstoffcharakterisierung und -prüfung unterstützt die Forschungsaktivitäten. An der Westsächsischen Hochschule Zwickau betreibt das Dresdner Institut das Fraunhofer-Anwendungszentrum für »Optische Messtechnik und Oberflächentechnologien« (AZOM). Die Fraunhofer-Projektgruppe am »Dortmunder OberflächenCentrum« (DOC) ist ebenfalls an das Dresdner Institut angeschlossen. Die Hauptkooperationspartner in den USA sind das »Center for Coatings and Diamond Technologies« (CCD) an der Michigan State University in East Lansing und das »Center for Laser Applications« (CLA) in Plymouth, Michigan. Das Fraunhofer IWS beschäftigt am Hauptsitz Dresden rund 450 Mitarbeiterinnen und Mitarbeiter.
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS ebenso gut wie das Edelmetall leiten, womöglich sogar besser – bei halbierten PRESSEINFORMATION Beschichtungskosten. Die Wissenschaftler des Fraunhofer IWS sind davon überzeugt, Nr. 09 | 2020 dass dies zu einer neuen Generation effektiverer Brennstoffzellen mit höherer 29. September 2020 || Seite 3 | 4 elektrischer Ausbeute beiträgt. Darüber hinaus verspricht die innovative Fraunhofer-Technologie auch ein höheres Produktionstempo. Denn die Kohlenstoffschicht ist so dünn, dass die Beschichtung selbst nur Sekunden dauert. Zudem können Stack-Produzenten in Zukunft ganze Blechrollen noch vor der Umformung »am laufenden Band« beschichten. Denn die Fraunhofer-Schicht ist so strapazierfähig, dass sie auch den Umform- und Schweißprozess aushält. »Das ermöglicht einen kontinuierlichen Fertigungsprozess und damit einen viel höheren Produktionsdurchsatz als bisher«, erklärt Dr. Roch. Brennstoffzellen-Fahrzeuge mit der Reichweite eines Diesels Solcherart aufgebesserte und preiswertere Brennstoffzellen sind insbesondere für den mobilen Einsatz wichtig. Sie eignen sich beispielsweise für umweltfreundlichere Autos, Busse und Lastkraftwagen mit großer Reichweite, die schnell nachtankbar sein müssen. Das Projekt »miniBIP II« trägt insofern zur jüngst bekräftigten Strategie der Bundesregierung bei, Deutschland zu einem Vorreiter zukunftsweisender Wasserstoff- Technologien zu machen. Einige Marktbeobachter wie IDTechEx und McKinsey erwarten, dass im Jahr 2030 bereits mehrere Millionen Fahrzeuge mit Brennstoffzel- len-Technik weltweit unterwegs sein werden. Die Fraunhofer-Gesellschaft hat sich dieser Herausforderung gestellt. In einer gemeinsamen Initiative stellen die beteiligten Institute ihre »Kompetenz für das Wasserstoff-Zeitalter« zur Verfügung. Auch das IWS ist Teil dieses Netzwerkes. Weitere Informationen dazu sind hier im Internet zu finden: https://www.fraunhofer.de/de/forschung/aktuelles-aus-der-forschung/wasserstoff.html Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden steht für Innovationen in der Laser- und Oberflächentechnik. Als Einrichtung der Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. bietet das Institut Lösungen aus einer Hand – von der Entwicklung neuer Verfahren über die Integration in die Fertigung bis hin zur anwendungsorientierten Unterstützung. Die Felder Systemtechnik und Prozesssimulation ergänzen die Kernkompetenzen. Zu den Technologiefeldern des Fraunhofer IWS gehören PVD- und Nanotechnik, Chemische Oberflächentechnik, Thermische Oberflächentechnik, Generieren und Drucken, Fügen, Laserabtragen und -trennen sowie Mikrotechnik. Das Kompetenzfeld Werkstoffcharakterisierung und -prüfung unterstützt die Forschungsaktivitäten. An der Westsächsischen Hochschule Zwickau betreibt das Dresdner Institut das Fraunhofer-Anwendungszentrum für »Optische Messtechnik und Oberflächentechnologien« (AZOM). Die Fraunhofer-Projektgruppe am »Dortmunder OberflächenCentrum« (DOC) ist ebenfalls an das Dresdner Institut angeschlossen. Die Hauptkooperationspartner in den USA sind das »Center for Coatings and Diamond Technologies« (CCD) an der Michigan State University in East Lansing und das »Center for Laser Applications« (CLA) in Plymouth, Michigan. Das Fraunhofer IWS beschäftigt am Hauptsitz Dresden rund 450 Mitarbeiterinnen und Mitarbeiter.
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS PRESSEINFORMATION Nr. 09 | 2020 29. September 2020 || Seite 4 | 4 Die Bipolarplatte (oben) wird mit einer Kohlenstoffschicht versehen (unten), die den Kontaktwiderstand verringert und gleichzeitig die Korrosionsbeständigkeit erhöht. © Fraunhofer IWS Dresden Das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden steht für Innovationen in der Laser- und Oberflächentechnik. Als Einrichtung der Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V. bietet das Institut Lösungen aus einer Hand – von der Entwicklung neuer Verfahren über die Integration in die Fertigung bis hin zur anwendungsorientierten Unterstützung. Die Felder Systemtechnik und Prozesssimulation ergänzen die Kernkompetenzen. Zu den Technologiefeldern des Fraunhofer IWS gehören PVD- und Nanotechnik, Chemische Oberflächentechnik, Thermische Oberflächentechnik, Generieren und Drucken, Fügen, Laserabtragen und -trennen sowie Mikrotechnik. Das Kompetenzfeld Werkstoffcharakterisierung und -prüfung unterstützt die Forschungsaktivitäten. An der Westsächsischen Hochschule Zwickau betreibt das Dresdner Institut das Fraunhofer-Anwendungszentrum für »Optische Messtechnik und Oberflächentechnologien« (AZOM). Die Fraunhofer-Projektgruppe am »Dortmunder OberflächenCentrum« (DOC) ist ebenfalls an das Dresdner Institut angeschlossen. Die Hauptkooperationspartner in den USA sind das »Center for Coatings and Diamond Technologies« (CCD) an der Michigan State University in East Lansing und das »Center for Laser Applications« (CLA) in Plymouth, Michigan. Das Fraunhofer IWS beschäftigt am Hauptsitz Dresden rund 450 Mitarbeiterinnen und Mitarbeiter. Dieses Feld, sowie die Tabelle auf der letzten Seite nicht löschen!
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS PRESS RELEASE PRESS RELEASE No. 09 | 2020 September 29, 2020 || Page 1 | 4 Graphite instead of gold: Thin layers for better hydrogen cars Innovative coating for bipolar plates in fuel cells (Dresden, September 29, 2020) Electric cars which can be filled up within five minutes, reach ranges like a diesel and yet drive "cleanly": This is already being achieved by hydrogen fuel cell vehicles today. However, so far they are still rare and expensive. Apart from efficiency problems, this is due, among other things, to one core component: Gold-coated bipolar plates (BiP) in fuel cells are expensive and complex to manufacture. The Fraunhofer Institute for Material and Beam Technology IWS Dresden, the German automotive group Daimler and the Finnish steel company Outokumpu Nirosta have now developed an economical alternative for rapid mass production. To this end, scientists at the Fraunhofer IWS have developed a technology that facilitates the continuous production of bipolar plates. Instead of gold, they coat the bipolar plates with a very thin carbon coating. This concept is well suited for mass production and can significantly reduce manufacturing costs. In addition, it contributes to the development of environmentally friendly vehicles. Fuel cells are promising technological alternatives to battery concepts „If the automotive industry is talking about alternative drive concepts today, it usually means battery electric driving", explains IWS Director Prof. Christoph Leyens. "Fuel cells, however, could offer an attractive technological solution for application scenarios such as trucks requiring a long range. We therefore work closely together with our industrial partners in order to enable more cost-effective and efficient fuel cells". "Engineers are idealists, too, and so we are particularly passionate about this project," emphasizes Dr. Teja Roch, scientist at the IWS. "We are delivering a cornerstone for climate-neutral mobility beyond classic combustion engines. However, the project will only work if the new process is profitable in practice. "Our technology offers the potential to significantly reduce the production costs of fuel cells." Head of Corporate Communications Markus Forytta | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS | Phone +49 351 83391-3614 | Winterbergstraße 28 | 01277 Dresden | www.iws.fraunhofer.de | markus.forytta@iws.fraunhofer.de Leader of Project Group at Dortmunder OberflächenCentrum DOC Dr.-Ing. Teja Roch | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS | Phone +49 231 844 -3894 | Eberhardstr. 12 | 44145 Dortmund | www.iws.fraunhofer.de | teja.roch@iws.fraunhofer.de
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS A fuel cell - how does it work? PRESS RELEASE No. 09 | 2020 Fuel cells operate like mini power plants: They are supplied with hydrogen and oxygen September 29, 2020 || Page 2 | 4 and use them to generate water, electricity and heat in a chemical reaction. Various designs can be considered. A widely used model is the PEM fuel cell. PEM fuel cells contain stacks consisting of many individual cells, each with a proton exchange membrane (PEM) in the middle. To the right and left of this membrane there are electrodes with catalysts, a gas diffusion layer (GDL) and bipolar plates on both sides. Hydrogen and oxygen flow through these plates into the cell. The plates consist of two stainless steel half plates each, on which special structures for gas flow and heat dissipation are embossed in a forming process and subsequently welded together. However, since steel surfaces only poorly conduct electricity, bipolar plates are often coated with gold to prevent rust formation. Above all, however, the precious metal ensures that the current can easily flow, meaning that the contact resistance between the gas diffusion layer and the bipolar plate remains low. "However, gold is known to be expensive," says Teja Roch, outlining a problem with this frequently used solution. "In addition, the stainless steel plates for the plates are first formed and welded together and subsequently coated in stacks. This is a rather costly and time-consuming process." Therefore, IWS researchers and their partners from the automotive and steel industry have explored new paths in the course of the joint project "miniBIP II" funded by the German Federal Ministry of Economics and Technology. Instead of using gold, they have coated the approximately 50 to 100 micrometers (thousandths of a millimeter) thin steel sheets with a graphite-like layer only a few nanometers (millionths of a millimeter) thick. They use physical vapor deposition (PVD) for this process. In this technology, an electric arc in a vacuum chamber first vaporizes the carbon, which is subsequently deposited on the stainless steel in a highly pure, uniform and very thin layer. Coating costs reduced by half Even in the pre-series stage, this carbon layer achieves a contact resistance similar to the gold coating. In other words, if the engineers further improve their process up to mass production, the coating will conduct electricity at least as well as the precious metal, possibly even better - at half the cost of coating. Fraunhofer IWS scientists are convinced that this will contribute to a new generation of more efficient fuel cells with higher electrical yield. The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden stands for innovations in laser and surface technology. As an institute of the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., IWS offers one stop solutions ranging from the development of new processes to implementation into production up to application-oriented support. The fields of systems technology and process simulation complement the core competencies. The technology fields of Fraunhofer IWS include PVD and nanotechnology, chemical surface technology, thermal surface technology, generation and printing, joining, laser ablation and separation as well as microtechnology. The competence field of material characterization and testing supports the research activities. At Westsächsische Hochschule Zwickau, IWS runs the Fraunhofer Application Center for Optical Metrology and Surface Technologies AZOM. The Fraunhofer project group at the Dortmunder OberflächenCentrum DOC® is also integrated into the Dresden Institute. The main cooperation partners in the USA include the Center for Coatings and Diamond Technologies (CCD) at Michigan State University in East Lansing and the Center for Laser Applications (CLA) in Plymouth, Michigan. Fraunhofer IWS employs around 450 people at its headquarters in Dresden.
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS In addition, the innovative Fraunhofer technology also promises a higher production PRESS RELEASE speed. The carbon layer is so extremely thin that the coating process itself takes only a No. 09 | 2020 few seconds. In addition, stack producers will in future be able to coat entire sheet September 29, 2020 || Page 3 | 4 metal rolls "non-stop" before forming. After all, the Fraunhofer coating is so durable that it can withstand the forming and welding process. "This enables a continuous manufacturing process and thus a much higher production throughput than ever before," explains Dr. Roch. Fuel cell vehicles with the range of a diesel Such improved and lower-cost fuel cells are particularly important for mobile use. They are particularly suitable for environmentally friendly cars, buses and long-range trucks that need to be refueled quickly. The "miniBIP II" project thus contributes to the Federal Government's recently reaffirmed strategy of making Germany a pioneer of future hydrogen technologies. Some market analysts such as IDTechEx and McKinsey expect that by 2030 several million vehicles with fuel cell technology will already be on the road worldwide. The Fraunhofer-Gesellschaft has taken up this challenge. In a joint initiative, the involved institutes are providing their "expertise to support the hydrogen age". Fraunhofer IWS participates in this network as well. Further information can be found online here: https://www.fraunhofer.de/en/research/current-research/hydrogen.html The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden stands for innovations in laser and surface technology. As an institute of the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., IWS offers one stop solutions ranging from the development of new processes to implementation into production up to application-oriented support. The fields of systems technology and process simulation complement the core competencies. The technology fields of Fraunhofer IWS include PVD and nanotechnology, chemical surface technology, thermal surface technology, generation and printing, joining, laser ablation and separation as well as microtechnology. The competence field of material characterization and testing supports the research activities. At Westsächsische Hochschule Zwickau, IWS runs the Fraunhofer Application Center for Optical Metrology and Surface Technologies AZOM. The Fraunhofer project group at the Dortmunder OberflächenCentrum DOC® is also integrated into the Dresden Institute. The main cooperation partners in the USA include the Center for Coatings and Diamond Technologies (CCD) at Michigan State University in East Lansing and the Center for Laser Applications (CLA) in Plymouth, Michigan. Fraunhofer IWS employs around 450 people at its headquarters in Dresden.
FRAUNHOFER-INSTITUT FÜR WERKSTOFF- UND STRAHLTECHNIK IWS PRESS RELEASE No. 09 | 2020 September 29, 2020 || Page 4 | 4 The bipolar plate (above) is coated with a carbon layer (below), reducing contact resistance and simultaneously increasing corrosion resistance. © Fraunhofer IWS Dresden The Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS Dresden stands for innovations in laser and surface technology. As an institute of the Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e. V., IWS offers one stop solutions ranging from the development of new processes to implementation into production up to application-oriented support. The fields of systems technology and process simulation complement the core competencies. The technology fields of Fraunhofer IWS include PVD and nanotechnology, chemical surface technology, thermal surface technology, generation and printing, joining, laser ablation and separation as well as microtechnology. The competence field of material characterization and testing supports the research activities. At Westsächsische Hochschule Zwickau, IWS runs the Fraunhofer Application Center for Optical Metrology and Surface Technologies AZOM. The Fraunhofer project group at the Dortmunder OberflächenCentrum DOC® is also integrated into the Dresden Institute. The main cooperation partners in the USA include the Center for Coatings and Diamond Technologies (CCD) at Michigan State University in East Lansing and the Center for Laser Applications (CLA) in Plymouth, Michigan. Fraunhofer IWS employs around 450 people at its headquarters in Dresden.
Sie können auch lesen