Willkommen zu Vorlesung: Keramische Werkstoffe - Prof. Dr. Alexander Michaelis Professur für Anorganisch-Nichtmetallische Werkstoffe - TU Dresden
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
Willkommen zu Vorlesung: Keramische Werkstoffe Prof. Dr. Alexander Michaelis Professur für Anorganisch-Nichtmetallische Werkstoffe © Fraunhofer IKTS
Fakultät Maschinenwesen Institut für Werkstoffwissenschaft, Professur für Anorganisch-Nichtmetallische Werkstoffe Keramische Werkstoffe (anorganisch-nichtmetallische Hochleistungswerkstoffe) Definitionen und Abgrenzungen: Silikatkeramik / Hochleistungskeramik / Struktur- Funktionskeramik Chemische Bindung und Struktur / typische Werkstoffklassen (Oxid- , Nichtoxidkeramik) Mechanische Eigenschaften: Griffith, Weibull, Verstärkunsmechanismen, Kriechen, SCG, Thermoschock, Thermische Eigenschaften Herstellverfahren Strukturkeramik (Pulversynthese, Masseaufbereitung, Formgebung, Entbindern, Sintern, Endbearbeitung) Sintern Herstellverfahren Funktionskeramik (Dickschicht, LTCC, HTCC), Additive Manufacturing Dielektrika, Piezo- Pyro.- Ferroelektrika, Keramische Systeme: Kondensatoren /Dielektrika für die Halbleitertechnologie Brennstoffzellen, Lambda Sonde Keramik für Umwelttechnologie 2 © Fraunhofer IKTS
300 years of advanced ceramics in Dresden Johann Friedrich Böttger * 1682 in Schleiz; Ehrenfried Walther von Tschirnhaus † 1719 in Dresden * 1651 in Kieslingswalde † 1708 in Dresden 3 © Fraunhofer IKTS
Was ist Keramik? Geschichte Alt-Steinzeit Älteste Tonfiguren vor ca. 2000 Jahren China - Herstellung von erstem Porzellan aus „besonderen Tonvorkommen“ 1709 Entwicklung des ersten europäischen Hart-Porzellans durch Böttger und Tschirnhaus in Dresden, Meißen – erste gezielte Werkstoffentwicklung 1849 Einsatz von Isolatoren aus Porzellan durch Werner von Siemens für Telegrafenleitung von Frankfurt nach Berlin 1931 Firma Hanke und Siemens: Sinterkorund-Zündkerze; erstmalig synthetischer Rohstoff für die Herstellung Technischer Keramik eingesetzt 50-er Jahre Durchbruch für synthetische keramische Werkstoffe 70-er Jahre Durchbruch für Funktionskeramik (Elektrotechnik, Elektronik) 80-er Jahre Keramikeuphorie: „PKW-Gasturbine“, „Keramikmotor“ umfangreiche Forschungsaktivitäten 4 © Fraunhofer IKTS
Keramik: “Mineralien unterschiedlicher Zusammensetzung und zweifelhafter Reinheit werden einer schlecht meßbaren Wärmebehandlung ausgesetzt, die lange genug dauert, um eine unbekannte Reaktion unvollständig ablaufen zu lassen, wobei sich heterogene nichtstöchiometrische Verbindungen bilden, die als Keramik bekannt sind”. Keramik: Anorganisch, Nichtmetallischer Werkstoff 5 © Fraunhofer IKTS
Associations with ceramic 6 © Fraunhofer IKTS
Associations with ceramic 7 © Fraunhofer IKTS
Associations with ceramics ? Keramik ist oft im System integriert und nicht sichtbar: Erfüllt aber die Schlüsselfunktion 8 © Fraunhofer IKTS Ceramtec; Doceram; Ibiden, Rauschert, IKTS; TASK
Ceramtec Associations with ceramic? 9 © Fraunhofer IKTS
Einzigartige Eigenschaften von Keramik: » Sehr Hart und Formstabil Maschinenbau » Korrosions- und Verschleißfest Automobilbau » Hochtemperaturbeständig Energie Systeme » Leicht » Biokompatibel LifeScience / Gesundheit » Multi-Funktional IT / Elektronik („alle“ phys. / chem. Eigenschaften möglich) - Aufgrund der Eigenschaftsvielfalt haben Keramiken ein enormes Potenzial für Produktinnovationen - Die technologischen Möglichkeiten sind noch weitgehend unausgeschöpft Große F&E Anstrengungen notwendig - Keramische Werkstoffe bestimmen die Grenzen der Technik!! 10 © Fraunhofer IKTS
Spannungs-Dehnungsverhalten verschiedener Werkstoffgruppen / K1C Anpassung (Fasern) 11 © Fraunhofer IKTS
Griffith behavior K IC σf ≈ The strength of a brittle material depends on the fracture toughness and the largest defect size in c the loaded volume Depend on microstructure Depends on the technology - Pores -Inclusions -Cracks -Large grains © Fraunhofer IKTS
Fraunhofer Institute of Ceramic Technologies and Systems IKTS, Germany Core Competencies Structural ceramics Functional ceramics Materials Sintering / Materials - Energy systems TEG Diagnostics and NDE (non and life science destructive evaluation) Processes and Environmental Electronics / Smart Microsystems Components Engineering Additive Manufacturing Industry 4.0 13 © Fraunhofer
Closed techonolgy chains: structural ceramics 1 powder processing 2 shaping 3 firing 4 finishing 14 © Fraunhofer IKTS
High Performance Aluminium and Zirconium Oxide Ceramics for Medical and Sensor Applications Optimized microstructure (uniform sub-micrometer grains, reinforcement with secondary ceramic phase, enhanced density) Improved mechanical properties (flexural strength, fracture toughness, micro-hardness, enhancement by factor 1.5) 200 nm REM photograph of an Surface toughened High dense Al2O3 Ceramic tooth crown etched Al2O3 ceramic Al2O3 joint implant pressure sensor (ZrO2) surface membranes 15 © Fraunhofer IKTS
Veranstaltung Reaching physical limits Vortragstitel Ort, Datum IKTS-Mosaik-window 81 ceramic-tiles © Fraunhofer 16
Fraunhofer IKTS Polycrystalline Ceramic Very hard (equivalent to sapphire) scratch resistant Excellent in-line transparency (at any thickness, any background) Example (by IKTS): Real in-line transmission ~83% (at 4 mm thickness) Discs in photos: 4 mm thick, 0.6 µm grain size, hardness HV10 ~ 14.5 GPa (A. Krell et al., Int. J. Appl. Ceram. Technol. 2011, 1108-1114; Opt. Mater. 2014, 61-74) ceramic: scratchproof as sapphire, but not as prone to cracks © Fraunhofer
Smart transparent ceramics in the Int. Year of Light Ceramic Coverters for laser-LED- head lightning Improved life time Improved luminosity and heat dissipation Improved down conversion Different light colors Lower production cost © Fraunhofer
Core competencies: Fraunhofer Institute of Ceramic Technologies and Systems IKTS Structural ceramics Functional ceramics Materials Sintering / Materials - Energy systems TEG Diagnostics and NDE (non and life science destructive evaluation) Processes and Environmental Electronics / Smart Microsystems Components Engineering Additive Manufacturing Industry 4.0 19 © Fraunhofer
Technology platform functional ceramics Functional ceramics 1 Paste / ink preparation 2 tape casting, printing Energy systems TEG and life science 3 3D-stacking 4 Lamination / sintering Electronics / Smart Microsystems Industry 4.0 20 © Fraunhofer IKTS
Multifunctional materials Cost barrier for economic Production costs for components success Functions © Fraunhofer
Production technology platform MLC (LTCC/HTCC) © Ceramtec AG 22 © Fraunhofer
Low Temperature Cofired Ceramics (LTCC) Cutting Via-Punching Via-Filling Screen Printing Collating Laminating Pressure 23 © Fraunhofer IKTS
Ceramic Microsystems – LTCC micro hybrid Requirement for high acceleration / temperature temperature up to 240 °C acceleration up to 30g gear box control EM19 with 32-bit micro hybrid ECU © Fraunhofer IKTS
LTCC – 3D Integration: multi layer ceramic technology Technology steps for the fabrication of LTCC-based pressure sensors - Punching - Via-filling/ screen printing I - Laminating I - Laser ablation/ cutting - Laminating II - Firing - Screen printing II - Firing Coexistence of electronic and fluidic components © Fraunhofer
Sensor and actuator development physical Mechanic (p, a > 100.000 g, F) Flow Temperature chemical pH, Ion-concentration Gases / CO2 Humidity 26 Dickschicht- und Multilayer-basierte keramische Sensoren und Mikrosysteme uwe.partsch@ikts.fraunhofer.de © Fraunhofer IKTS
SENSOR AND ACTUATOR SYSTEMS FOR HARSH ENVIRONMENTS! INDUSTRY 4.0 eHarsh Quelle: mcucoatings.com Quelle: flickriver.com Quelle: Rolls-Royce plc Quelle: seniorflexonics.de Quelle: momentum-magazin.de Quelle: energy-mag.com Quelle: IPT Quelle: faz.net 27 © Fraunhofer
Additive Manufacturing of ceramic 2,5D and 3D-components Funktionskeramik Strukturkeramik Ceramic Multilayer Printing + Ceramic Injection Moulding (CIM) = Additive Manufacturing Technology / LTCC Porous + dense porous dense © Fraunhofer IKTS © LITHOZ GmbH 3D 2.5D 3D Lateral resolution 50µm Min. lateral resolution Lateral resolution 100µm 30µm Multi-material Systems Multi-material Systems Multi-material (e.g. 2-component Functionalization -integration moulding) Co-Sintering Materials Know How 28
Energy and Environmental Technology at IKTS Ceramics for combustion Membranes for Filtration Fuel Cells engines and turbines Oxyfuel / Power to Gas Renewables Energy Harvesting Storage Technology (Piezoceramics, TEG) Li-Battery Supercup Na-NiCl SOEC - (Electrolysis) © Fraunhofer IKTS
The American Ceramic Society`s 2015 Corporation Environmental Achievement Award Ceramic nanofiltration membranes for efficient water treatment Industrial waste water treatment unit Winners of the last years: Murata Electronics, Toyota Central Research, OSRAM SYLVANIA Products, Pilkington Technology Management Limited, SCHOTT North America © Fraunhofer IKTS
Produced water treatment with ceramic nano filtration membranes “Produced water”: byproduct in oil and gas industry (water flooding of oil reservoirs to increase yield, oil sand refinery, fracking) Challenges: ingredients of „produced water“ Particles (abrasion) Oil and tar (high fouling) Salts (high scaling) Results: Ceramic membranes Separation of oil droplets by microfiltration Feed Partial desalination by nanofiltration Both together with one step nanofiltration Ceramic membranes Retentate Permeate © Fraunhofer IKTS
Structure of ceramic membranes Environmental and Process Engineering Ceramic Membrane Materials Ceramic Membranes Amorphous MIECs R-O O-R Me R-O O-R R-O O O-R Me Me R-O O O-R R-O O-R Me Zeolites Carbon R-O O-R 32 © Fraunhofer
Environmental and Process Engineering Examples of Application Ceramic Membranes Amorphous MIECs Zeolites Carbon Biogas Oxygen separation purification Wast water cleaning Bioethanol dewatering 33 © Fraunhofer
Energy and Environmental Technology at IKTS Ceramics for combustion Membranes for Filtration Fuel Cells engines and turbines Oxyfuel / Power to Gas Photovoltaics Energy Harvesting Storage Technology (Piezoceramics, TEG) Li-Battery Supercup Na-NiCl SOEC - (Electrolysis) © Fraunhofer IKTS
The Energy future – as we see it conventional Biogas Power generation PtG technology SOFC MCFC Range Solar Solar Wind extender SOFC technology Storage SOEC Supercap Li-Ion NaNiCl Redox-Flow Power to Gas (Fuel) Small grid Grid residential commercial Industry 6 .. 7 Base load Scale e-mobility Application kWh TWh approaching real decentralized (no-grid) solutions © Fraunhofer
Li-Ion Battery value chain Electrode Cell assembly & Powder synthesis Slurry Mixing Cell testing manufacturing packaging Powder synthesis Development of Efficient Material and Electrical and and modification an adapted slip methods for electrode thermal Methods for compositions slurry mixing characterization characterization analysis and for the coating Development of Sophisticated of commercial optimization of process technologies for spectro- cells thermal process Sophisticated coating of electrochemical Stationary and Methods for methods of electrode films characterization dynamic characterization slurry (impedance, modeling of of powders characterization Raman,…) battery cell (FESEM, XRD; and performance Raman; thermal optimization properties; particle size ) © Fraunhofer IKTS
Ceramic Materials and powder processing dertermines battery performance Makro- to Nano evaluation Tap density Capacity Discharge current Processing Cycle stabilty Power density Life time Safety 37 © Fraunhofer IKTS
Example: Electromobility Tesla Model S Ca. 500 km Reichweite 96 Zellen je 60 Ah ~ 8000 Zellen je 3,4 Ah BMW i3 150 km Reichweite © Fraunhofer IKTS - 38 -
LiNi0,5Mn1,5O4/Li4Ti5O12 – Bipolar battery © Fraunhofer IKTS VERTRAULICH - 39 -
Battery - Roadmap IKTS RCC-40; 40 Ah Natrium-Batterie Keramische CERES / cerenergy® große, vollkeramische Na-NiCl-Batterien (stationär) QuantumScape TRL 5 TRL 7 TRL 8 (VW) Innovationsgrad / Disruption Festelektrolyt Keramischer Keramische Festkörperbatterie Lithium-Batterietechnik basierend auf vollständig anorganischen Komponenten TRL 1 TRL3 TRL5 TRL7 Festelektrolyt EMBATT2.0 Seeo Polymerer großflächige Bipolarbatterie basierend auf polymeren Elektrolyten in Lithium-Batterietechnik (Bosch) TRL 2 TRL3 TRL5 TRL7 EMBATT1.0 großflächige Bipolarbatterie basierend auf konv. Lithium-Batterietechnik Flüssiger Elektrolyt TRL 5 TRL7 Konventionelle Lithium-Ionen-Technik 2017 2018 2019 2020 2021 2022 2023 2024 2025 © Fraunhofer - Vertraulich -
Fraunhofer IKTS Stationary Storage: NiCl2 + 2Na ↔ Ni + 2NaCl, E0 = 2,58 V cerenergy® – Na/NiCl2 battery system for stationary energy storage Basis: inexpensive local raw materials material cost < 30 $ kWh Good environmental compatibility main components are common salt and nickel Extremely safe, as no spontaneous combustion can occur Application: Ideal for stationary storage in combination with renewable energies (solar and wind energy) cerenergy® – Na/NiCl2 battery system for stationary energy storage. © Fraunhofer
reduction of production cost by factor 10 Dry pressing Flat substrates Extrusion ∅ 20 bis 30 mm, thickness 0,5 to 2 mm Tubes ∅ 20 bis 60 mm, wall. 1,5 mm, legth up Isostatic pressing to 600 mm cost- reduction: factor 10 Beakers ∅ 20 mm, wall thickness. 1,5 mm, length 150 mm 42 © Fraunhofer IKTS
Na-Battery-Systems are less complex than Li-Systems Na-Battery Li-Battery + 50°C ∆T = 250°C ∆T = -28°C 300 °C - 30°C 22 °C ∆T = 330°C ∆T = 52°C passive cooling (∆T > 0) active cooling + heating Thermal self heating Lose of warrenty at +/- 2 Kelvin No Air Conditioning Fire hazard at > 60 °C Inherently safe / simple Massive power demand for air BMS conditioning © Fraunhofer 43
Tertiary Elements: Brennstoffzelle z.B. Solid Oxide Fuel Cell (SOFC) at IKTS Material MEA Stack System 3YSZ matrix LSC catalyst 44 © Fraunhofer IKTS
Advantage of Fuel Cells: Direct conversion of chemical energy into power Hydrogen production reverse process: by electrolysis Fuel Cell 45 © Fraunhofer IKTS
Strategische Bedeutung der MCFC / Energiewende MCFC: > 250 kW Fuel Cell Types AFC PEM PAFC MCFC SOFC 80 °C 80 °C 200 °C 650 °C 850 °C Oxidation- gas O2 O2 H2O O2 H2O CO2 O2 O2 Luft exhaust Cathode current Electrolyte OH- CO3- - O-- load MCFC + SOFC H+ H+ optimum systems for Anode CHP H2 H2O H2 H2 H2 H2O H2 H2O exhaust Fuelgas CO CO2 CO CO2 SOFC: < 250 kW Alkaline Polymer phosphoric Molten Solid FC Electrolyte acid FC carbonate electrolyte Membrane FC FC FC Multi Fuel capable. Simple Reforming = conventional Hydrocarbon fuels can be used no Pt ! 46 © Fraunhofer IKTS
IKTS Fuel Cell System Competence 1W 10 W 100 W 1 kW 10 kW 1 MW portable portable portable stationary stationary hydrogen Propane LPG NG Biogas + NG Biogas + NG Ethanol Tubular Ethanol SOFC SOFC MCFC PEFC SOFC SOFC Elektrolyse © Fraunhofer
1.0 www.ceragen.org - 48 -
Next Step with h2e system: CCHP Fuel Cell with PV and battery components total power grid independence !! NG PV-panel Conventional system for (1-2 kWp) heating or/and absorption cooling Heatinmg or Cooling Heat Heating / absorption cooling PV-power Hot water Heat ! Power out Base power 2.0 Cold water stationary-battery storage (NaNiCl) Including DC/AC converter Water heat storage www.ceragen.org - 49 - - business confidential -
Power generating stand by heating system SOFC-based Range Extender Benefits: 3.0 High efficiency for fuel to power conversion => ηel bis zu 40 % Flexible Fuels => Diesel, gasoline, biogas, LPG, CNG, EtOH; H2 Dis-advantage Limited power, poor dnamics Added value: Heat generation => „power generating stand by heating system“ Excess power can be used for feed in of power into home => „Reversed Plug-In Hybrid“ © Fraunhofer IKTS - 50 -
SOEC (solid oxide electrolysis): Hydrogen generation and value added producs from excess power, H2O and CO2 Combination of Co- Electrolysis and gasförmige Fischer-Tropsch Produkte Synthesis for efficient production of high cost chemicals (ηen bis exhaust 55 %) CO2-Separation Utilization of waste heat is essential for CO2 sufficiant efficiency Synthesis reactor Co-Electrolysis (e.g. Fischer Gas-Liquid- Separation SOEC-Stacks already Tropsch) H2, CO available for Co- Electrolyisis Chemical New process and H2O Products reactor concepts (e.g. waxes) based on ceramic materials are being SOEC developed at IKTS 51 © Fraunhofer
CO2-Reduction Stahlerzeugung CO2-Nutzung CO2-Vermeidung Carbon Capture and Utilization (CCU) Carbon Direct Avoidance (CDA) Synthesegas über Co-Elektrolyse Substitution von Kohle Kopplung von Elektrolyse und Synthese Nutzung von erneuerbarem Wasserstoff Shutterstock, Oleksiy_Mark Shutterstock, M.Khebra © Fraunhofer
Industrielle CO2-Emissionen Vergleich von CCU und CDA für die Stahlindustrie Derzeit installierte Leistung: 56 GW*** 8 Mio. t p.a. H2 60% + - CCU CH3OH 60% Emissions- Methanolsynthese reduktion 5 Mio. t p.a.** 4,3 GW 1880 Windräder* Schachtofen Energiebedarf H2 pro vermiedener + - t CO2 4,3x CDA 5 Mio. t p.a.** 95% geringer! Emissions- Elektrolichtbogenofen reduktion 1,6 GW 700 Windräder* * Annahmen: 4.000 Betriebsstunden p.a. mit einer Anlagenleistung von 5 MW ** Referenz: Rohstahlproduktion p.a. der Salzgitter AG *** Die angegebene Leistung bezieht sich auf Deutschland im Jahr 2018 und unterliegt einem Zubau von rd. 3 GW p.a. © Fraunhofer 53
CO2-Emission Reduction Electrolysis is core technology for CCU and CDA and Hydrogen economy ! Alkaline Electrolysis PEM-Electrolysis SOEC: High Temperature Electrolysis ©NEL ©AREVA Industriell etabliert Demo/Anwendung Labor/Demo Korrosive Medien Geringere Temperatur: ~800 °C Lebensdauer Geringe 3,0–4,2 kWh/Nm³ H2 + CO Stromdichten 4,2–5,6 kWh/Nm³ H2 4,2–5,9 kWh/Nm³ H2 © Fraunhofer
Keramische Werkstoffe, Bauteile haben ein vielseitiges Einsatzspektrum und sind aus der modernen Industrie und Alltag nichtmehr wegzudenken Werden in der Regel da eingesetzt wo andere Werkstoffe versagen oder unikale Effekte realisiert werden müssen können durch ausgefeilte Technologien / mikrostrukturelles Design und entsprechende konstruktive Auslegung so gestaltet werden, dass katastrophales Versagen durch Sprödbruch ausgeschlossen werden kann. 55 © Fraunhofer IKTS
Sie können auch lesen