Willkommen zu Vorlesung: Keramische Werkstoffe - Prof. Dr. Alexander Michaelis Professur für Anorganisch-Nichtmetallische Werkstoffe - TU Dresden

Die Seite wird erstellt Nikolas-Stefan Wulf
 
WEITER LESEN
Willkommen zu Vorlesung:
                        Keramische Werkstoffe

       Prof. Dr. Alexander Michaelis
       Professur für Anorganisch-Nichtmetallische Werkstoffe

© Fraunhofer IKTS
Fakultät Maschinenwesen Institut für Werkstoffwissenschaft, Professur für Anorganisch-Nichtmetallische Werkstoffe

Keramische Werkstoffe (anorganisch-nichtmetallische Hochleistungswerkstoffe)

 Definitionen und Abgrenzungen: Silikatkeramik / Hochleistungskeramik / Struktur-
Funktionskeramik
 Chemische Bindung und Struktur / typische Werkstoffklassen (Oxid- ,
Nichtoxidkeramik)
 Mechanische Eigenschaften: Griffith, Weibull, Verstärkunsmechanismen, Kriechen,
SCG, Thermoschock, Thermische Eigenschaften
 Herstellverfahren Strukturkeramik (Pulversynthese, Masseaufbereitung,
Formgebung, Entbindern, Sintern, Endbearbeitung)
 Sintern
 Herstellverfahren Funktionskeramik (Dickschicht, LTCC, HTCC), Additive
Manufacturing
 Dielektrika, Piezo- Pyro.- Ferroelektrika,
 Keramische Systeme:
   Kondensatoren /Dielektrika für die Halbleitertechnologie
   Brennstoffzellen, Lambda Sonde
   Keramik für Umwelttechnologie

 2      © Fraunhofer IKTS
300 years of advanced ceramics in Dresden

Johann Friedrich Böttger
* 1682 in Schleiz;                         Ehrenfried Walther von Tschirnhaus
† 1719 in Dresden                          * 1651 in Kieslingswalde
                                           † 1708 in Dresden

 3       © Fraunhofer IKTS
Was ist Keramik?            Geschichte

Alt-Steinzeit
     Älteste Tonfiguren
vor ca. 2000 Jahren
     China - Herstellung von erstem Porzellan aus
     „besonderen Tonvorkommen“
1709
    Entwicklung des ersten europäischen Hart-Porzellans durch
    Böttger und Tschirnhaus in Dresden, Meißen – erste gezielte
    Werkstoffentwicklung
1849
    Einsatz von Isolatoren aus Porzellan durch Werner von
    Siemens für Telegrafenleitung von Frankfurt nach Berlin
1931
    Firma Hanke und Siemens: Sinterkorund-Zündkerze; erstmalig synthetischer
    Rohstoff für die Herstellung Technischer Keramik eingesetzt
50-er Jahre
    Durchbruch für synthetische keramische Werkstoffe
70-er Jahre
    Durchbruch für Funktionskeramik (Elektrotechnik, Elektronik)
80-er Jahre
    Keramikeuphorie: „PKW-Gasturbine“, „Keramikmotor“
    umfangreiche Forschungsaktivitäten
    4      © Fraunhofer IKTS
Keramik:
    “Mineralien unterschiedlicher Zusammensetzung und
    zweifelhafter Reinheit werden einer schlecht meßbaren
    Wärmebehandlung ausgesetzt, die lange genug dauert,
    um eine unbekannte Reaktion unvollständig ablaufen zu
    lassen, wobei sich heterogene nichtstöchiometrische
    Verbindungen bilden, die als Keramik bekannt sind”.
                Keramik: Anorganisch, Nichtmetallischer Werkstoff

5   © Fraunhofer IKTS
Associations with ceramic

 6   © Fraunhofer IKTS
Associations with ceramic

 7   © Fraunhofer IKTS
Associations with ceramics ?

                    Keramik ist oft im System integriert und nicht sichtbar:
                               Erfüllt aber die Schlüsselfunktion

8   © Fraunhofer IKTS

                              Ceramtec; Doceram; Ibiden, Rauschert, IKTS; TASK
Ceramtec

Associations with ceramic?

 9   © Fraunhofer IKTS
Einzigartige Eigenschaften von Keramik:

»    Sehr Hart und Formstabil
                                                 Maschinenbau
»    Korrosions- und Verschleißfest
                                                                    Automobilbau
»    Hochtemperaturbeständig
                                                 Energie Systeme
»    Leicht
»    Biokompatibel                               LifeScience / Gesundheit
»    Multi-Funktional                             IT / Elektronik
     („alle“ phys. / chem.
     Eigenschaften möglich)

 -    Aufgrund der Eigenschaftsvielfalt haben Keramiken ein enormes Potenzial für
      Produktinnovationen
 -    Die technologischen Möglichkeiten sind noch weitgehend unausgeschöpft
        Große F&E Anstrengungen notwendig
 -    Keramische Werkstoffe bestimmen die Grenzen der Technik!!

10      © Fraunhofer IKTS
Spannungs-Dehnungsverhalten verschiedener
              Werkstoffgruppen / K1C Anpassung (Fasern)

11   © Fraunhofer IKTS
Griffith behavior

     K IC
σf ≈
                    The strength of a brittle material depends on the
                    fracture toughness and the largest defect size in
       c            the loaded volume

                        Depend on microstructure

                                            Depends on the technology
                                            - Pores
                                            -Inclusions
                                            -Cracks
                                            -Large grains

© Fraunhofer IKTS
Fraunhofer Institute of Ceramic Technologies and Systems IKTS, Germany
                              Core Competencies

               Structural ceramics                         Functional ceramics

   Materials                    Sintering / Materials -        Energy systems          TEG
                                Diagnostics and NDE (non       and life science
                                destructive evaluation)

Processes and                   Environmental                  Electronics / Smart Microsystems
Components                      Engineering
Additive Manufacturing                                         Industry 4.0

 13
© Fraunhofer
Closed techonolgy chains: structural ceramics
     1 powder processing    2 shaping

 3 firing                   4 finishing

14      © Fraunhofer IKTS
High Performance Aluminium and Zirconium Oxide
Ceramics for Medical and Sensor Applications

     Optimized microstructure (uniform sub-micrometer grains, reinforcement with secondary
     ceramic phase, enhanced density)
     Improved mechanical properties (flexural strength, fracture toughness, micro-hardness,
     enhancement by factor 1.5)

 200 nm

REM photograph of an          Surface toughened        High dense Al2O3          Ceramic tooth crown
etched Al2O3 ceramic          Al2O3 joint implant      pressure sensor           (ZrO2)
surface                                                membranes

15        © Fraunhofer IKTS
Veranstaltung   Reaching physical limits
Vortragstitel                                       Ort, Datum

                                           IKTS-Mosaik-window
                                           81 ceramic-tiles

© Fraunhofer
                                                                 16
Fraunhofer IKTS
Polycrystalline Ceramic

        Very hard (equivalent to sapphire)         scratch resistant
        Excellent in-line transparency (at any thickness, any background)
                                  Example (by IKTS): Real in-line transmission ~83%
                                  (at 4 mm thickness)
                                  Discs in photos: 4 mm thick, 0.6 µm grain size, hardness
                                  HV10 ~ 14.5 GPa

                                        (A. Krell et al., Int. J. Appl. Ceram. Technol. 2011, 1108-1114; Opt.
                                        Mater. 2014, 61-74)

ceramic: scratchproof as sapphire, but not as prone to cracks

© Fraunhofer
Smart transparent ceramics in the Int. Year of Light
Ceramic Coverters for laser-LED- head lightning

       Improved life time
       Improved luminosity and heat dissipation
       Improved down conversion
       Different light colors
       Lower production cost

© Fraunhofer
Core competencies: Fraunhofer Institute of Ceramic Technologies and Systems IKTS

                  Structural ceramics                         Functional ceramics

      Materials                    Sintering / Materials -        Energy systems          TEG
                                   Diagnostics and NDE (non       and life science
                                   destructive evaluation)

   Processes and                   Environmental                  Electronics / Smart Microsystems
   Components                      Engineering
   Additive Manufacturing                                         Industry 4.0

    19
   © Fraunhofer
Technology platform functional ceramics

                                                      Functional ceramics

 1 Paste / ink preparation 2 tape casting, printing

                                                       Energy systems          TEG
                                                       and life science
 3 3D-stacking             4 Lamination / sintering

                                                       Electronics / Smart Microsystems
                                                       Industry 4.0

20    © Fraunhofer IKTS
Multifunctional materials
                                                 Cost barrier for economic
   Production costs for components

                                                 success

                                     Functions

© Fraunhofer
Production technology platform   MLC (LTCC/HTCC)

© Ceramtec AG

 22
© Fraunhofer
Low Temperature Cofired Ceramics (LTCC)

                                             Cutting

                                          Via-Punching

                                            Via-Filling

                                          Screen Printing

                                            Collating

                                           Laminating

                         Pressure

23   © Fraunhofer IKTS
Ceramic Microsystems – LTCC micro hybrid
    Requirement for high acceleration / temperature

                                                   temperature up to 240 °C
                                                   acceleration up to 30g

                    gear box control EM19
                    with 32-bit micro hybrid ECU

© Fraunhofer IKTS
LTCC – 3D Integration: multi layer ceramic technology

             Technology steps for the fabrication of LTCC-based pressure sensors

                 -   Punching
                 -   Via-filling/ screen printing I
                 -   Laminating I
                 -   Laser ablation/ cutting
                 -   Laminating II
                 -   Firing
                 -   Screen printing II
                 -   Firing

Coexistence of electronic and fluidic components

  © Fraunhofer
Sensor and actuator development
physical

                Mechanic (p, a > 100.000 g, F)                        Flow                       Temperature
chemical

                pH, Ion-concentration                                 Gases / CO2                Humidity

           26        Dickschicht- und Multilayer-basierte keramische Sensoren und Mikrosysteme
                     uwe.partsch@ikts.fraunhofer.de
                     © Fraunhofer IKTS
SENSOR AND ACTUATOR SYSTEMS FOR
HARSH ENVIRONMENTS!   INDUSTRY 4.0
eHarsh

 Quelle: mcucoatings.com       Quelle: flickriver.com      Quelle: Rolls-Royce plc      Quelle: seniorflexonics.de

 Quelle: momentum-magazin.de             Quelle: energy-mag.com           Quelle: IPT    Quelle: faz.net

27
© Fraunhofer
Additive Manufacturing of ceramic 2,5D and 3D-components

      Funktionskeramik                    Strukturkeramik
Ceramic Multilayer Printing       +   Ceramic Injection Moulding
                                      (CIM)
                                                                     =   Additive Manufacturing
Technology / LTCC
                                                                                             Porous + dense
                                                                           porous

                                                                             dense

                  © Fraunhofer IKTS                                                          © LITHOZ GmbH

                                                                              3D
       2.5D                                 3D
                                                                              Lateral resolution 50µm
       Min. lateral resolution              Lateral resolution 100µm
       30µm                                                                   Multi-material Systems
                                            Multi-material Systems
       Multi-material                       (e.g. 2-component                 Functionalization
       -integration                         moulding)                         Co-Sintering

                                             Materials Know How
 28
Energy and Environmental Technology at IKTS

         Ceramics for combustion     Membranes for Filtration             Fuel Cells
            engines and turbines      Oxyfuel / Power to Gas

                    Renewables     Energy Harvesting            Storage Technology
                                   (Piezoceramics, TEG)
                                                                         Li-Battery
                                                                         Supercup
                                                                         Na-NiCl
                                                                         SOEC -
                                                                       (Electrolysis)

© Fraunhofer IKTS
The American Ceramic Society`s 2015 Corporation
 Environmental Achievement Award

  Ceramic nanofiltration membranes for efficient water
  treatment

                                                    Industrial waste water
                                                    treatment unit

 Winners of the last years: Murata Electronics, Toyota Central Research,
 OSRAM SYLVANIA Products, Pilkington Technology Management
 Limited, SCHOTT North America

© Fraunhofer IKTS
Produced water treatment with ceramic nano filtration
   membranes
    “Produced water”: byproduct in oil and gas industry
    (water flooding of oil reservoirs to increase yield, oil sand refinery, fracking)

Challenges: ingredients of „produced water“
   Particles (abrasion)
   Oil and tar (high fouling)
   Salts (high scaling)

Results: Ceramic membranes
   Separation of oil droplets by microfiltration
                                                                                        Feed
     Partial desalination by nanofiltration
     Both together with one step nanofiltration

                      Ceramic membranes                                Retentate        Permeate
  © Fraunhofer IKTS
Structure of ceramic
                                                          membranes
 Environmental and Process Engineering
                             Ceramic Membrane Materials

                                 Ceramic Membranes

       Amorphous                                                 MIECs
       R-O O-R
         Me
               R-O O-R
R-O    O   O-R     Me
    Me
          R-O    O   O-R
R-O O-R       Me            Zeolites         Carbon
                R-O   O-R

  32
 © Fraunhofer
Environmental and Process Engineering
                           Examples of Application

                          Ceramic Membranes

       Amorphous                                           MIECs

                     Zeolites          Carbon

                                     Biogas          Oxygen separation
                                     purification
Wast water
cleaning

                   Bioethanol
                   dewatering
  33
 © Fraunhofer
Energy and Environmental Technology at IKTS

         Ceramics for combustion      Membranes for Filtration             Fuel Cells
            engines and turbines       Oxyfuel / Power to Gas

                    Photovoltaics   Energy Harvesting            Storage Technology
                                    (Piezoceramics, TEG)
                                                                          Li-Battery
                                                                          Supercup
                                                                          Na-NiCl
                                                                          SOEC -
                                                                        (Electrolysis)

© Fraunhofer IKTS
The Energy future – as we see it
                                                                              conventional
                                                                   Biogas
                Power generation                                     PtG
                technology
                                 SOFC                              MCFC
                                Range        Solar        Solar                      Wind
                               extender
                                                                     SOFC
           technology
Storage

                                                                                               SOEC
                         Supercap          Li-Ion           NaNiCl         Redox-Flow         Power
                                                                                           to Gas (Fuel)

                                                                                  Small grid          Grid
                                          residential commercial   Industry         6 .. 7         Base load

                                                                                                               Scale
                            e-mobility                     Application
                              kWh                                                      TWh
                        approaching real decentralized (no-grid) solutions
             © Fraunhofer
Li-Ion Battery value chain

                                            Electrode          Cell assembly &
     Powder synthesis   Slurry Mixing                                              Cell testing
                                            manufacturing      packaging

     Powder synthesis    Development of     Efficient           Material and       Electrical and
     and modification    an adapted slip    methods for         electrode          thermal
     Methods for         compositions       slurry mixing       characterization   characterization
     analysis and        for the coating    Development of      Sophisticated      of commercial
     optimization of     process            technologies for    spectro-           cells
     thermal process     Sophisticated      coating of          electrochemical    Stationary and
     Methods for         methods of         electrode films     characterization   dynamic
     characterization    slurry                                 (impedance,        modeling of
     of powders          characterization                       Raman,…)           battery cell
     (FESEM, XRD;        and                                                       performance
     Raman; thermal      optimization
     properties;
     particle size )

© Fraunhofer IKTS
Ceramic Materials and powder processing dertermines battery
performance    Makro- to Nano evaluation

     Tap density
     Capacity             Discharge current
     Processing           Cycle stabilty
                                              Power density
                                              Life time
                                                              Safety
37    © Fraunhofer IKTS
Example: Electromobility

                                                Tesla Model S
                                                Ca. 500 km Reichweite

                    96 Zellen
                    je 60 Ah
                                ~ 8000 Zellen
                                je 3,4 Ah

                                                BMW i3
                                                150 km Reichweite

© Fraunhofer IKTS                   - 38 -
LiNi0,5Mn1,5O4/Li4Ti5O12 – Bipolar battery

© Fraunhofer IKTS
                    VERTRAULICH
                                  - 39 -
Battery - Roadmap IKTS

                                                                                                                                                                             RCC-40; 40 Ah

                               Natrium-Batterie
                                 Keramische                                                                                          CERES / cerenergy®
                                                                                                                 große, vollkeramische Na-NiCl-Batterien (stationär)
                                                                                                                                                                                                               QuantumScape
                                                                         TRL 5                                 TRL 7                                        TRL 8                                                  (VW)
Innovationsgrad / Disruption

                               Festelektrolyt
                                Keramischer

                                                                                                                                                                                    Keramische Festkörperbatterie
                                                                                                                                                 Lithium-Batterietechnik basierend auf vollständig anorganischen Komponenten

                                                                 TRL 1                            TRL3                                        TRL5                                                              TRL7
                               Festelektrolyt

                                                                                                                                                                                             EMBATT2.0             Seeo
                                 Polymerer

                                                                                                                großflächige Bipolarbatterie basierend auf polymeren Elektrolyten in Lithium-Batterietechnik      (Bosch)
                                                         TRL 2                             TRL3                                       TRL5                                            TRL7

                                                                                                                                                        EMBATT1.0
                                                                                                  großflächige Bipolarbatterie basierend auf konv. Lithium-Batterietechnik
                                  Flüssiger Elektrolyt

                                                                                   TRL 5                                    TRL7

                                                                                        Konventionelle Lithium-Ionen-Technik

                                                                 2017            2018         2019                 2020                2021                2022                   2023            2024             2025

                    © Fraunhofer
                                                                                                  - Vertraulich -
Fraunhofer
                                                                                         IKTS
Stationary Storage:

               NiCl2 + 2Na ↔ Ni + 2NaCl,           E0 = 2,58 V

       cerenergy® – Na/NiCl2 battery system for stationary
       energy storage
               Basis: inexpensive local raw materials
               material cost < 30 $ kWh
               Good environmental compatibility  main
               components are common salt and nickel
               Extremely safe, as no spontaneous combustion
               can occur

       Application:
               Ideal for stationary storage in combination with
               renewable energies (solar and wind energy)

                                                                  cerenergy® – Na/NiCl2 battery
                                                                  system for stationary energy
                                                                  storage.

© Fraunhofer
reduction of production cost by factor 10
     Dry pressing
                          Flat substrates
                                                               Extrusion
                          ∅ 20 bis 30 mm,
                          thickness 0,5 to 2 mm

                                      Tubes ∅ 20 bis 60 mm,
                                      wall. 1,5 mm, legth up
     Isostatic pressing                     to 600 mm

                                cost-
                             reduction:
                              factor 10

                          Beakers ∅ 20 mm,
                          wall thickness. 1,5 mm,
                          length 150 mm

42
© Fraunhofer IKTS
Na-Battery-Systems are less complex than Li-Systems

                     Na-Battery                                     Li-Battery

                                               + 50°C
                                  ∆T = 250°C        ∆T = -28°C

                     300 °C
                                               - 30°C                      22 °C
                                  ∆T = 330°C        ∆T = 52°C

                passive cooling (∆T > 0)                         active cooling + heating
                Thermal self heating                             Lose of warrenty at +/- 2 Kelvin
                No Air Conditioning                              Fire hazard at > 60 °C
                Inherently safe / simple                         Massive power demand for air
                BMS                                              conditioning

 © Fraunhofer   43
Tertiary Elements: Brennstoffzelle
z.B. Solid Oxide Fuel Cell (SOFC) at IKTS
Material
                                 MEA
                                            Stack
                                                    System

 3YSZ matrix
                  LSC catalyst

44   © Fraunhofer IKTS
Advantage of Fuel Cells:
                      Direct conversion of chemical energy into power

Hydrogen production                                                     reverse process:
   by electrolysis                                                          Fuel Cell

 45      © Fraunhofer IKTS
Strategische Bedeutung der MCFC / Energiewende                                                 MCFC: > 250 kW

                                  Fuel Cell Types
                   AFC             PEM         PAFC         MCFC      SOFC
                   80 °C           80 °C       200 °C       650 °C    850 °C
Oxidation-
gas                   O2          O2 H2O O2 H2O CO2 O2                O2 Luft      exhaust

Cathode                                                                               current

Electrolyte          OH-                                     CO3- -      O--
                                                                                       load         MCFC + SOFC
                                     H+          H+                                                 optimum
                                                                                                    systems for
  Anode                                                                                             CHP

                  H2 H2O              H2          H2       H2 H2O H2 H2O           exhaust
Fuelgas
                                                           CO CO2 CO CO2
                                                                                                 SOFC: < 250 kW
                  Alkaline        Polymer     phosphoric   Molten    Solid
                  FC              Electrolyte acid FC      carbonate electrolyte
                                  Membrane                 FC        FC
                                  FC

                                                   Multi Fuel capable.
                                                   Simple Reforming = conventional
                                                   Hydrocarbon fuels can be used   no Pt !
    46        © Fraunhofer IKTS
IKTS Fuel Cell System Competence

  1W           10 W       100 W      1 kW         10 kW         1 MW

  portable     portable   portable   stationary   stationary

 hydrogen      Propane    LPG        NG           Biogas + NG   Biogas + NG
 Ethanol       Tubular    Ethanol    SOFC         SOFC          MCFC
 PEFC          SOFC       SOFC                    Elektrolyse

© Fraunhofer
1.0
www.ceragen.org         - 48 -
Next Step with h2e system:
CCHP Fuel Cell with PV and battery components
    total power grid independence !!
                                                                      NG
                            PV-panel                                                      Conventional system for
                            (1-2 kWp)                                                     heating or/and absorption cooling

                                                                                                     Heatinmg or Cooling
                                                                                 Heat

                                                                                                Heating / absorption cooling
                                   PV-power
                                                                                                     Hot water
                                                                                 Heat !
Power out                                                  Base power

                                                                                2.0
                                                                                                      Cold water

                  stationary-battery storage (NaNiCl)
                       Including DC/AC converter                                      Water heat storage

www.ceragen.org                                                                                                       - 49 -
                                                    - business confidential -
Power generating stand by heating system
SOFC-based Range Extender

Benefits:                                                      3.0
     High efficiency for fuel to power conversion
     => ηel bis zu 40 %

     Flexible Fuels
     => Diesel, gasoline, biogas, LPG, CNG, EtOH; H2

Dis-advantage

     Limited power, poor dnamics

Added value:

     Heat generation
     => „power generating stand by heating system“

     Excess power can be used for feed in of power into home
     => „Reversed Plug-In Hybrid“

© Fraunhofer IKTS                           - 50 -
SOEC (solid oxide electrolysis): Hydrogen generation and
value added producs from excess power, H2O and CO2

                                                                                              Combination of Co-
                                                                                              Electrolysis and
                                                                  gasförmige
                                                                                              Fischer-Tropsch
                                                                    Produkte                  Synthesis for efficient
                                                                                              production of high
                                                                                              cost chemicals (ηen bis
                           exhaust                                                            55 %)
                  CO2-Separation                                                              Utilization of waste
                                                                                              heat is essential for
                   CO2
                                                                                              sufficiant efficiency
                                              Synthesis reactor
                 Co-Electrolysis                (e.g. Fischer
                                                                         Gas-Liquid-
                                                                         Separation
                                                                                              SOEC-Stacks already
                                                  Tropsch)
                                     H2, CO                                                   available for Co-
                                                                                              Electrolyisis
                                                                               Chemical       New process and
           H2O                                                                 Products
                                                                                              reactor concepts
                                                                               (e.g. waxes)
                                                                                              based on ceramic
                                                                                              materials are being
                 SOEC                                                                         developed at IKTS

   51
  © Fraunhofer
CO2-Reduction

                                                                                                                 Stahlerzeugung

          CO2-Nutzung                                     CO2-Vermeidung
          Carbon Capture and Utilization (CCU)            Carbon Direct Avoidance (CDA)
               Synthesegas über Co-Elektrolyse                         Substitution von Kohle
               Kopplung von Elektrolyse und Synthese                   Nutzung von erneuerbarem Wasserstoff

                                                       Shutterstock, Oleksiy_Mark       Shutterstock, M.Khebra

© Fraunhofer
Industrielle CO2-Emissionen
Vergleich von CCU und CDA für die Stahlindustrie

                                                                                                                               Derzeit installierte Leistung: 56 GW***
                                  8 Mio. t p.a.                                                     H2
                                                            60%                              +                   -
 CCU

                                                                      CH3OH

               60%
               Emissions-
                                                              Methanolsynthese
               reduktion
                                   5 Mio. t p.a.**                                                                                 4,3 GW         1880 Windräder*
                                                                   Schachtofen                                                                       Energiebedarf
                                                                                                    H2                                              pro vermiedener
                                                                                             +                   -                                        t CO2

                                                                                                                                                      4,3x
 CDA

                                    5 Mio. t p.a.**                                                      95%
                                                                                                                                                       geringer!
                                                                                                         Emissions-
                                                              Elektrolichtbogenofen                      reduktion                 1,6 GW         700 Windräder*
               * Annahmen: 4.000 Betriebsstunden p.a. mit einer Anlagenleistung von 5 MW ** Referenz: Rohstahlproduktion p.a. der Salzgitter AG
               *** Die angegebene Leistung bezieht sich auf Deutschland im Jahr 2018 und unterliegt einem Zubau von rd. 3 GW p.a.

© Fraunhofer           53
CO2-Emission Reduction
Electrolysis is core technology for CCU and CDA and Hydrogen economy !

Alkaline Electrolysis                  PEM-Electrolysis    SOEC: High Temperature Electrolysis

               ©NEL                        ©AREVA

               Industriell etabliert      Demo/Anwendung                 Labor/Demo
               Korrosive Medien           Geringere                      Temperatur: ~800 °C
                                          Lebensdauer
               Geringe                                                   3,0–4,2 kWh/Nm³ H2 + CO
               Stromdichten               4,2–5,6 kWh/Nm³ H2
               4,2–5,9 kWh/Nm³ H2

© Fraunhofer
Keramische Werkstoffe, Bauteile

          haben ein vielseitiges Einsatzspektrum und sind aus der
          modernen Industrie und Alltag nichtmehr wegzudenken
          Werden in der Regel da eingesetzt wo andere Werkstoffe
          versagen oder unikale Effekte realisiert werden müssen
          können durch ausgefeilte Technologien /
          mikrostrukturelles Design und entsprechende
          konstruktive Auslegung so gestaltet werden, dass
          katastrophales Versagen durch Sprödbruch
          ausgeschlossen werden kann.

 55   © Fraunhofer IKTS
Sie können auch lesen