TIERÄRZTLICHE HOCHSCHULE HANNOVER - TIHO ELIB
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
Tierärztliche Hochschule Hannover Assoziationen zwischen der Keimdichte im Haltungsumfeld und an der Zitzenspitze – ein Beitrag zur Bekämpfung von Mastitiden mit umweltassoziierten Mastitiserregern in Milchviehbetrieben INAUGURAL-DISSERTATION zur Erlangung des Grades einer Doktorin der Veterinärmedizin - Doctor medicinae veterinariae - (Dr. med. vet.) vorgelegt von Maria - Franziska Hohmann Forst/Lausitz Hannover 2020
Wissenschaftliche Betreuung: Prof. Dr. Volker Krömker Section for Production, Nutrition and Health Department of Veterinary and Animal Science Faculty of Health and Medical Science University of Copenhagen 1. Gutachter: Prof. Dr. Volker Krömker 2. Gutachter: Prof. Dr. Nicole Kemper Tag der mündlichen Prüfung: 10.11.2020
Unsere größte Schwäche liegt im Aufgeben. Der sicherste Weg zum Erfolg ist immer, es doch noch einmal zu versuchen. Thomas Alva Edison (Amerikanischer Erfinder, 1847 - 1931)
Meinen Eltern in tiefster Dankbarkeit
Teile der vorliegenden Arbeit wurden bereits auf den folgenden Tagungen vorgestellt: Hohmann, M.-F., Wente, N., Zhang, Y., Krömker; V. Bestimmung der Keimdichte auf der Haut der Zitzenspitze Mastitisnachmittag: Forschung für die Praxis Hannover, 01.03.2019 Hohmann, M.-F., Wente, N., Zhang, Y., Krömker; V. Ausgewählte Risikofaktoren für Mastitiden in der Haltungsumwelt 44. Leipziger Fortbildungsveranstaltung: Labordiagnostik in der Bestandsbetreuung Leipzig, 21.06.2019 Hohmann, M.-F., Wente, N., Zhang, Y., Krömker; V. Mastitiserreger auf der Zitzenspitze - was beeinflusst die Erregerdichte auf der Haut Mastitisnachmittag: Forschung für die Praxis Hannover, 06.03.2020 Teile der vorliegenden Arbeit wurden bereits publiziert: Hohmann, M.-F., Wente, N., Zhang, Y., Klocke, D., Krömker, V. Comparison of two teat skin sampling methods to quantify teat contamination (Vergleich zweier Methoden zur Quantifizierung der Zitzenkontamination) Milk Science International, 73, 2-6 Veröffentlicht im Februar 2020 Hohmann, M.-F., Wente, N., Zhang, Y., Krömker; V. Bacterial load of the teat apex skin and associated factors at herd level (Bakteriendichte auf der Zitzenspitze und assoziierte Faktoren auf Herdenebene) Animals, 10, 1647, DOI: 10.3390/ani10091647 Veröffentlicht: 14.09.2020
Inhaltsverzeichnis Inhaltsverzeichnis 1. Einleitung……….……………………………………………………………………..9 2. Publikation I ………………………………………………………...………………14 2.1. Abstract………………………………………………………………………15 2.2. Introduction………………………………………………………………….16 2.3. Material and methods………………………………………………………17 2.4. Results……………………………………………………………………….19 2.5. Discussion……………………………………………….…………………..21 2.6. Conclusion…………………………….………………………………….…24 2.7. References…………………………………………………………………..25 3. Publikation II……………………………………………………………….………..28 3.1. Simple Summary…………………………………..……………………….29 3.2. Abstract…………………….………………………………………………..29 3.3. Introduction………………………………………………………………….30 3.4. Material and methods………………………………………….…………..31 3.5. Results……………………………………………….………………………36 3.6. Discussion………………….………………………………………………..44 3.7. Conclusion………………….……………………………………………….51 3.8. Appendix…………………………………………………………………….52 3.9. References………………………………………………………….……….56 4. Diskussion……………………..…………………………………………………….61 5. Zusammenfassung……………..…………………………………………………..71 6. Summary……………...……………………………………………………………..73 7. Literaturverzeichnis……………………………..………………………………….75 8. Danksagung ………………...……………………………………………………...81
Einleitung 1. Einleitung Mastitis, die Entzündung der Milchdrüse, ist eine der wirtschaftlich bedeutendsten Erkrankungen der Milchkuh im 21. Jahrhundert. Aufgrund verminderter Syntheseleistung, veränderter Inhaltsstoffe, erhöhter somatischer Zellgehalte und Behandlungskosten ist sie von enormer Bedeutung für das einzelne Tier sowie für den ökonomischen Erfolg des Milchviehbetriebes (Seegers et. al., 2003). Es handelt sich um eine Entzündung, die in den meisten Fällen in Folge verminderter Abwehrreaktionen des Wirtsorganismus mit nachfolgender Invasion pathogener Mikroorganismen entsteht (Krömker, 2007). Abgesehen von speziellen Mastitiden, für die eine endogene Invasion auf hämatogenem, lymphogenem bzw. perkutanem Weg diskutiert wird, gelangen die meisten Mastitiserreger galaktogen über den Zitzenkanal an der Zitzenspitze in die Milchdrüse (DVG, 2002). Dort vermehren sie sich und führen zu einer Entzündung der auskleidenden Schleimhäute und des Drüsengewebes mit den oben beschriebenen Folgen. Mikroorgansimen, die für die Entstehung einer Mastitis verantwortlich sind, werden epidemiologisch kategorisiert in „kuhassoziiert“ und „umweltassoziiert“. Neuere Untersuchungen weisen darauf hin, dass für manche Erreger, zum Beispiel Streptococcus (Sc.) agalactiae und Klebsiella pneumoniae, gewisse „Grauzonen“ existieren (Zadoks et al., 2011). Kuhassoziierte Mastitiserreger stammen aus dem erkrankten Euterviertel und werden in den meisten Fällen beim Melken über die Melktechnik oder über die Milch von Tier zu Tier übertragen. Zu dieser Gruppe werden Staphylococcus (Staph.) aureus, Sc. agalactiae, Sc. dysgalactiae sowie Streptokokken der serologischen Gruppe G und L gezählt (Krömker, 2007). Jørgensen et al. (2016) vermuten ein Reservoir von Sc. agalactiae im bovinen Gastrointestinaltrakt sowie im Haltungsumfeld der Milchkuh. Sie diskutieren einen kontagiösen und einen oro-fäkalen Infektionsweg (Jørgensen et al., 2016). Durch strategische Bekämpfungsmaßnahmen und gezielten Antibiotikaeinsatz in den letzten Jahren konnte die Inzidenz von Infektionen mit kuhassoziierten Erregern immer mehr zurückgedrängt werden, wodurch umweltassoziierte Mastitiserreger an Bedeutung gewonnen haben (Makovec und Ruegg, 2003). Diese stammen aus dem Haltungsumfeld der Tiere und ihre Übertragung findet überwiegend zwischen den Melkzeiten im Stallbereich oder auf der Weide statt. Zu dieser Gruppe zählen Sc. uberis und Enterococcus spp., vornehmlich Enterococcus faecium und Enterococcus faecalis (zusammengefasst als äskulinspaltende Streptokokken) sowie coliforme Keime, wie Escherichia (E.) coli, Klebsiella spp. und Enterobacter spp. (Krömker, 9
Einleitung 2007). Laut aktuellen Untersuchungen sind die am häufigsten aus Milchproben klinischer Mastitiden isolierten Umwelterreger Enterokokken, Sc. uberis und coliforme Keime (Pinzón-Sánchez & Ruegg, 2011; Wente et al., 2016). Die Entstehung von „Umweltmastitiden“ wird durch zwei Faktoren maßgeblich beeinflusst: 1. Die Dichte an pathogenen Mastitiserregern an der Zitzenspitze respektive im Haltungsumfeld und 2. Durch die Immunkompetenz des Tieres. Letztere wird unter anderem bestimmt durch das Laktationsstadium (Burvenich et al., 2003), die Energiebalance (Suriyasathaporn et al., 2000), Vitamindefizite (Smith et al., 1997) und den Impfstatus (Bradley et al., 2015). Die anfälligste Zeit an einer Mastitis, verursacht durch umweltassoziierte Erreger, zu erkranken ist die Zeit zu Beginn der Trockenstehphase und peripartal um die Kalbung. Hier kommt es aufgrund vieler Stoffwechselumstellungen zu einer starken Beeinträchtigung der immunologischen Abwehr der Kuh (Krömker, 2007; Bradley et al., 2015). Weiterhin stellt der Zitzenkanal an der Zitzenspitze für die meisten Mastitiserreger die Eintrittspforte zur Milchdrüse dar, weshalb die Erregerdichte vor der Zitzenspitze die Entstehung von „Umweltmastitiden“ maßgeblich beeinflusst. Zur Quantifizierung von Erregerdichten an der Zitzenkuppe sind mehrere Verfahren in der Literatur beschrieben: Die meisten Autoren verwenden einen einzelnen Baumwoll- oder Mulltupfer, welcher trocken (De Visscher et al., 2014) oder leicht angefeuchtet (Baumberger et al., 2016; Verdier-Metz, 2012; Monsallier et al., 2012) verwendet wird. Dabei werden die Zitzen beprobt, indem die Tupfer entweder um die Zitzenspitze geführt werden (De Visscher et al., 2014) oder indem die Zitzen beginnend an der Zitzenbasis, absteigend über die Zitzenspitze und wieder aufsteigend bis zur Zitzenbasis abgefahren werden (Baumerberger et al., 2016). Pfannenschmidt modifizierte in seiner Promotion 2003 die Nass-Trockentupfer-Technik (DIN 10113-1; 1997-07), zur Bestimmung von Keimdichten in Melkanlagen. Paduch & Krömker (2011) modifizierten diese Technik, sodass Keimdichten an der Zitzenspitze zuverlässiger bestimmt werden können. Diese optimierte Methode wurde in weiteren Studien verwendet, um die mikrobielle Belastung an der Zitzenspitze quantifizieren zu können (Paduch et al., 2012 & 2013; Svenneson et al., 2019). Mittels unterschiedlicher Techniken konnte schon früh belegt werden, dass die Rate neuer intramammärer Infektionen mit zunehmender bakterieller Belastung an den Zitzenenden steigt (Neave et al., 1969; Pankey, 1989). Physikalische Eigenschaften der Zitzenspitzen selbst können dabei Einfluss auf die Eutergesundheit nehmen: Paduch et al. (2012) konnten zeigen, dass Zitzen mit ausgeprägten Hyperkeratosen, 10
Einleitung die durch eine unzureichende Anpassung der Melktechnik an die Tiere verursacht werden, eine höhere mikrobielle Belastung mit E. coli und Sc. uberis aufwiesen als Zitzen mit weniger rauhen Zitzenspitzen. Hyperkeratosen fördern durch Rhagaden die Keimakkumulation und erschweren die Reinigung der Zitzenspitze. Ein Zusammenhang zwischen Hyperkeratosen und einer erhöhten Inzidenz von Mastitiden wird immer wieder kontrovers in der Literatur diskutiert (Neijenhuis et al., 2001; Zoche- Golob et al., 2015; Guarin et al., 2017; Svenneson et al., 2019). Assoziationen zwischen Zitzendimensionierungen (Länge, Zitzen- & Zitzenspitzendurchmesser) und der Belastung mit mastitisrelevanten Mikroorganismen konnte bislang nicht festgestellt werden. In derselben Studie wurden jedoch höhere Erregerdichten auf Zitzen der Hinterviertel als auf Zitzenhautabstrichen der vorderen Zitzenpaare gefunden. Dies folgt vermutlich aus einer höheren Spritzkontamination beim Laufen sowie durch Anhaften von Schmutz und Kot der hinteren Gliedmaßen beim Liegen (Guarin et al., 2017). Eine erhöhte mikrobielle Belastung sowie ein erhöhtes Mastitisrisiko durch stark verschmutzte Euter wurde mehrfach beschrieben (Schreiner & Ruegg, 2003; Munoz et al., 2008; Firth et al., 2019). Hauptreservoir von Umweltkeimen sind benutzte und unbenutzte Einstreu sowie Kot. Mehrfach wurde beschrieben, dass die Erregerdichte an der Zitzenspitze mit den Erregerdichten in der Einstreu positiv korrelieren (Lowe et al., 2015; Rowbotham & Ruegg, 2016). Generell scheint organische Einstreu höhere Keimdichten an coliformen Keimen und Streptokokken aufzuweisen, als anorganische Einstreu, wie beispielsweise Sand. Für Sägespäne wurden höhere Keimdichten an Klebsiella spp. beschrieben, während in Stroh höhere Werte an Streptococcus spp. ermittelt wurden (Hogan et al., 1989). Ob die unterschiedlichen Einstreumaterialien allerdings als Ursprungsquelle oder eher als geeignetes Medium zur Vermehrung für die jeweiligen Pathogene dienen, ist nicht genau bekannt. Neben dem direkten Einfluss der Erregerdichten in der Umwelt beeinflussen auch Managementpraktiken die mikrobielle Flora an der Zitzenspitze: Wissenschaftler aus den USA und den Niederlanden stellten heraus, dass die Keimdichten an E.coli und Streptococcus spp. in der Einstreu und an der Zitzenspitze sinken, je häufiger die Laufwege im Stall gesäubert werden (Lowe et al., 2015; Santmann-Berends et al., 2016). Paduch et al. (2013) wiesen weiterhin deutlich geringere Keimdichten von Sc. uberis, E. coli und anderen coliformen Keimen nach, wenn die Einstreu mit alkalisierenden Substanzen, in diesem Fall einem Mischprodukt mit Löschkalk, behandelt wurde, als in unbehandelter Einstreu. Höhere Gehalte an Lactobacillus spp. und Enterococcus spp. 11
Einleitung wurden mit einer auf Silage basierenden Ernährung, Freilaufställen mit Stroheinstreu und mäßiger Melkhygiene, aber auch mit multiparen Kühen in Verbindung gebracht (Monsallier et al., 2011). Während Fliegen als Überträger für Staph. aureus und Sc. agalactiae beschrieben wurden, wird die gemeine Stechfliege oder Stallfliege, Stomoxys calcitrans, als Überträger für E. coli vermutet (Castro et al., 2016). Zur Verbesserung des Tierwohls und zur ökonomischen Stabilisierung von Milchviehbetrieben erscheint es sinnvoll, Konzepte zur Reduktion oben beschriebener Mikroorganismen auf der Haut der Zitzenspitze entwickeln zu können. In der konventionellen Milchviehhaltung wie in der Nutztierhaltung insgesamt steht der Einsatz von Antibiotika durch befürchtete Resistenzbildungen zunehmend in der Kritik (Oliver et al., 2011). Jeder Einsatz antibakterieller Wirkstoffe in der Veterinär- und in der Humanmedizin fördert die Selektion von Resistenzen in Mikroorgansimen (Kaspar et al., 2015). Infektionen, welche durch antibiotikaresistente Bakterien verursacht werden, nehmen zu, sind schwieriger zu therapieren und führen folglich häufiger zu komplizierteren Krankheitsverläufen. Die WHO kategorisierte Antibiotika anhand ihrer humanmedizinischen, kritischen Bedeutung (Critically Important Antimicrobials; CIA), um für einen bedachten Einsatz und eine weiterhin erhaltene Wirksamkeit zu sorgen. Viele als „kritisch“ angesehen Antibiotika werden auch in der Tierhaltung und in der Mastitistherapie eingesetzt, zum Beispiel Cephalosporine der 3. und 4. Generation und Fluorchinolone (WHO, 2019). Gemäß der 2015 vom Bundeskabinett verabschiedeten „Deutschen Antibiotika-Resistenzstrategie 2020“(DART 2020) gilt die Vermeidung von Infektionen als eine der Hauptmaßnahmen, die zur Verringerung des Antibiotikaeinsatzes nötig ist, um im Rahmen des „One health“ - Ansatzes die Entstehung und Ausbreitung von Antibiotikaresistenzen sektorübergreifend eindämmen zu können. Der Fokus im Umgang mit Mastitiden liegt folglich auf deren Prävention. Daraus lässt sich schließen, dass dies eine verringerte Exposition der Zitzenspitze gegenüber umweltassoziierten Mastitiserregern sowie eine Verbesserung der immunologischen Reaktion des Wirts auf bakterielle Herausforderungen voraussetzt. Oben beschriebene Arbeiten, welche sich mit den Einflussfaktoren auf die Erregerdichte an der Zitzenspitze beschäftigt haben, beziehen sich in den meisten Fällen auf das einzelne Tier oder wurden unter vorher bestimmten Versuchsbedingungen durchgeführt. Im Fokus des modernen Herdenmanagements 12
Einleitung bzw. der heutigen tierärztlichen Bestandsbetreuung steht zunehmend die Herde als Gesamtheit. Deshalb war es das Ziel dieser Arbeit, praxisnah mögliche Risikofaktoren für die Dichte umweltassoziierter Mastitiserreger an der Zitzenspitze auf Herdenebene ableiten und benennen zu können. In einem ersten Versuch wurde dazu die analytische Übereinstimmung zweier Methoden zur Quantifizierung von Mikroorganismen auf der Zitzenspitze verglichen. Die in der Literatur häufig verwendete modifizierte Nass-Trockentupfer-Technik (NTT) galt hierfür als Referenzmethode und wurde mit einer neuen Technik verglichen, bei der die Zitzenspitze für einen definierten Zeitabschnitt in einen Behälter mit steriler Ringerlösung getaucht wurde. Grund für die Etablierung neuer Methoden ist der nicht gänzlich auszuschließende Untersucherbias bei der Entnahme von Nass- Trockentupfern (Druck, der auf die Tupfer ausgeübt wird und Geschwindigkeit, mit der die Tupfer um die Zitzenspitze geführt werden) sowie der enorme Zeitaufwand, welcher in die Vor- und Nachbereitung der Tupfer investiert werden muss. In einem zweiten, größer angelegten Versuch wurden auf zufällig ausgewählten Milchviehbetrieben unterschiedlichster Größen Assoziationen zwischen der Zitzenhautbesiedlung mit äskulinspaltenden Streptokokken und coliformen Bakterien und Betriebsgegebenheiten (mikrobielle Belastung der Umwelt, Hygienemanagement, Melkmanagement) untersucht. Hierfür wurden in regelmäßigen Abständen Betriebsbesuche durchgeführt. Neben mikrobiologischen Untersuchungen von Nass- Trockentupfern der Zitzenspitze, Einstreuproben und Luftkeimproben, wurden individuelle Betriebsfaktoren berücksichtigt. Die Betriebe wurden hierfür nicht vorselektiert, lediglich Betriebe, die ein Automatisches Melksystem benutzen, wurden ausgeschlossen. Um die sich verändernden Risikofaktoren auf die Erregerdichten der Zitzenspitze berücksichtigen zu können, wurden die Daten je Besuchstermin erfasst und statistisch analysiert. 13
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2. Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination (Vergleich zweier Methoden zur Quantifizierung der Kontamination auf der Zitzenhaut) Maria-F. Hohmann1, Nicole Wente1, Yanchao Zhang1, Doris Klocke1, Volker Krömker1,2 1Fakultät II, Abteilung für Bioverfahrenstechnik – Mikrobiologie, Hochschule Hannover 2 Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, University of Copenhagen, Gronnegardsvej 2, 1870, Frederiksberg C, Denmark Milk Science International 2020, 73: 2-6. Eingereicht: 17.12.2019 Akzeptiert: 28.01.2020 14
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2.1. Abstract The aim of this research was to compare two sampling methods quantifying microbial load on teat ends, especially mastitis pathogens originating from the cows’ surroundings. Methods were compared using a split udder design, including 132 teat pairs in the study. For the first method, the wet/dry swab technique, a moistened swab was rotated 360° around the teat end, followed by a dry swab in the same manner. For the second and new method, the dipping technique, teat ends were immersed in a cup filled with Ringer’s solution and were removed after five seconds. Microbial load per milliliter as well as per teat end was calculated by determining the number of total aerobic mesophilic bacteria as well as environmental pathogenic bacteria, including coliform bacteria and esculin-positive streptococci. The concordance correlation coefficient (CCC) was used to quantify the agreement between two series of measurements and revealed the following coefficients: 0.112 for total aerobic mesophilic bacteria; 0.008 for coliform bacteria and 0.001 for esculin positive streptococci. The results of this study point out that under field conditions, the new method does not provide similar results when compared with the wet/dry swab technique for determining teat end microbial load. Keywords Teat end colonization, mastitis pathogens, wet/dry swab technique, dipping technique, microbial load 15
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2.2. Introduction Bovine mastitis, the inflammation of the mammary gland, is a complex disease considering its etiology, pathogenesis and therapy. Due to its enormous importance for the individual cow as well as for the economic losses caused by the disease, it is necessary to further characterize causative pathogens in order to develop control strategies [1,2]. A wide variety of microorganisms are discussed as being responsible for the development of mastitis and these can be epidemiologically categorized into contagious, originating from infected quarters, or environmental, located in the surroundings of dairy cows [3,4,5,6]. While the prevalence of contagious mastitis has been reduced by control programs in recent years, environmental pathogens are becoming increasingly important [4]. Most prevalent environmental microorganisms isolated in milk samples of clinical mastitis cases are esculin-positive streptococci, Escherichia coli and Klebsiella spp. [7]. In recent years, many authors have shown that teat end bacterial load can affect udder health [8,9,10]. Microorganisms found on the teat surface, especially coliforms and streptococci, are chemotrophic organisms requiring organic material to use for their metabolism. If these bacteria are present in large populations on the teat skin, this reflects a transient rather than a resident flora [11]. Furthermore, Paduch et al., 2012 [12] pointed out that environmental bacterial load of the teat canal increases with highly calloused teat ends. Furthermore, some studies revealed a lower microbial load on teat skin in primiparous cows, which might be caused by less contact with litter due to a lower udder depth or smoother surface [6]. Thus, it can be assumed that the teat skin serves as a reservoir for pathogens, posing a risk for udder health. As can be seen, it is necessary to gain more information concerning the variation in the bacterial load on teat epithelia. For this purpose, some researchers described methods quantifying teat end bacterial load. Most authors used only one cotton or gauze swab, either dry [13] or moistened [14,15]. Teats were sampled by rotating [13,16] or by wiping one side of the teat barrel from top to bottom, passing over the teat end and wiping the other side of the teat barrel from top to bottom [14]. Paduch & Krömker [17] modified the wet/dry swab technique (DIN 10113-1; 1997-07) used in a previous study by Pfannenschmidt, 2003 [18] for determining the bacterial content in milking equipment. Furthermore, the technique was used in other investigations 16
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination dealing with teat end bacterial load [10,12,19]. Nevertheless, personal influences, particularly the pressure exerted on the swab or the speed of swabbing, together with the amount of work invested in sample collection and preparation (two swabs) need to be reduced to provide reliable results [18]. To make the procedure faster and more objective, we evaluated a new method where teats were dipped in a sample vessel filled with Ringer’s solution for a constant period of time. The aim of the study at hand was to compare the analytical performance of two methods, the wet/dry swab technique and a new dipping technique, for quantifying the microbial load of environmental mastitis pathogens on dairy cows’ teat skin. 2.3. Material and Methods The study took place from June to July 2018 and was conducted on two commercial dairy farms in Lower Saxony, northwestern Germany. Two herds participated: One herd of 35 cows mainly included German Holstein Red cows, with an average milk yield of 8,095 kg (Dairy Herd Improvement Association, DHIA) and mean bulk milk somatic cell count of 269,000 cells/mL; the second herd of 65 animals mainly consisted of German Holstein Black cows, with an average milk yield of 10,856 kg (DHIA) and a mean bulk milk somatic cell count of 218,000 cells/mL. All cows were housed in free-stall barns, either sawdust-bedded or bedded in dried horse manure mixed with shredded straw and alkalized with lime. Healthy lactating primiparous and multiparous cows were selected as described by Paduch & Krömker [17], according to the following criteria: Four functional quarters without udder infections or signs of clinical mastitis (i.e., no clotting or discoloration of milk, no swelling or udder redness and no heat upon udder palpation), apparently clean udders (teat skin without splashing or plaques of manure), no visible udder lesions or trauma, teat tissue and skin that appeared normal. The study included the results of 66 cows, so that a total of 132 teat pairs were sampled. A split-udder design was used to compare the methods at udder half level. A teat was matched with its contralateral teat to eliminate individual influences. In the following, each method was used once per udder half and could be compared on the basis of this. Two teat pairs were tested per cow. Two contralateral teats (e.g., left front, right rear or right front, left rear) were sampled with the modified wet/dry swab technique after the pre-cleaning and pre- milking routine before milking as described by Paduch and Krömker [17]. The first swab 17
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination (ultrafine, Dry Swab, Check Diagnostics GmbH, Westerau, Germany) was moistened with ¼ Ringer’s solution (Merck, Darmstadt, Germany) and rotated 360° around the teat canal orifice at a distance of 1 cm from the teat apex. The same procedure was carried out with the dry swab. Immediately after sampling, the tips of both swabs were transferred to one tube containing 2 mL of sterile Ringer’s solution. The remaining contralateral teats were prepared in the same way. These were dipped in a cup filled with 40 mL of ¼ Ringer’s solution (Merck, Darmstadt, Germany) until the lower 1.5 cm of the teat had been moistened. After five seconds, the teat was removed from the dip solution. All samples were taken during the morning milking by one researcher and then transported at 5 °C to the microbiology laboratory at the University of Applied Sciences and Arts Hannover (Germany) within 8 h. Samples were discarded directly at the time of sampling when any obvious contamination took place or liquid was spilled. Therefore, a new pair of teats was sampled on another cow in a similar manner. In the laboratory, both swab samples and dipping samples were vortexed (Vortex Genie2, Scientific Industries Inc., Bohemia, NY, USA) each for 20 seconds and swabs were then removed from the swab samples with sterile tweezers. Serial 1:10 dilutions were prepared with ¼ Ringer’s solution and a volume of 0.1 mL was spread in duplicate over the whole of a pre-dried 9 cm diameter agar plate with a Drigalski spatula. The total number of aerobic mesophilic bacteria was determined with Plate Count agar (Merck, Darmstadt, Germany) and incubated at 30 °C for 72 h. ChromoCult Coliform agar (Merck, Darmstadt, Germany) was used for detecting coliform bacteria, while esculin positive streptococci (e.g., Streptococcus (S.) uberis, Lactococcus lactis, Enterococcus spp.) were determined with Kanamycin Esculin Azide agar (Merck, Darmstadt, Germany). The latter two were incubated at 37 °C for 24 h. Plates with 1-300 colonies were used to calculate bacterial counts in swab and dipping solution [17]. The weighted arithmetic mean was calculated for each pathogen group and results were indicated in colony-forming units per milliliter (cfu/mL) as well as colony-forming units per teat end. A teat end represents the lower 1 cm (wet/dry swab technique) or 1.5 cm (dipping technique) of the teat and is assumed to have a diameter of 19.6 mm [20], giving an estimated teat skin area of around 9.2 cm² or 12.3 cm², respectively. As bacterial counts were not normally distributed, results were log10-transformed prior to further analysis. To calculate the reliability between bivariate pairs of 18
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination observations, we used the Lin’s Concordance Correlation Coefficient, as suggested by Watson & Petrie and Koch & Spoerl [21,22,23]. The CCC provides a measure of reliability based on correspondence. For measuring the agreement between two continuous variables, values from -1 to +1 occur, whereby 1 indicates strong concordance [24]. The CCC was computed by SPSS 25.0 (IBM Inc., Chicago, IL, USA). As there was no normal distribution of bacterial counts, we used the Kruskal-Wallis test to determine whether the teat end bacterial load showed a tendency towards a specific lactation number, related to the results of Rowbotham & Ruegg [6]. In accordance with Rowbotham & Ruegg [6] and because the wet/dry swab technique represents our reference method, results thereof were used for this purpose. 2.4. Results The calculations included bacterial loads of 132 teat pairs (Table 1). In teat skin swabs, the median total mesophilic count was 5.008 log10 cfu/mL Ringer’s solution or rather 5.309 log10 cfu/teat end. In dipping solution, the median was 3.374 log 10 cfu/mL and 4.975 log10 cfu/teat end for total mesophilic counts. Calculation of concordance yielded the following results for total aerobic mesophilic counts: CCC = 0.112 (CI: 0.057 - 0.165). A closer evaluation of the group of environmental pathogens revealed the following for coliform bacteria: Teat swabs: median = 1.301 log10 cfu/mL or in relation to the sampled area: median = 1.477 log10 cfu/teat end. In the dipping solution, the median was 1.000 log10 cfu/mL and 1.000 log10 cfu/teat end. The CCC result was 0.008 (CI: 0.005 - 0.01) for log10-transformed counts. The other main group of environmental bacteria, esculin-positive streptococci, were found in wet/dry swabs with a median of 2.249 log10 cfu/mL or rather 2.538 log10 cfu/teat end. For the new dipping technique method, a median of 1.000 log10 cfu/mL was found. Extrapolating the results to the teat apex provided a median of 1.000 log10 cfu/teat end. Nevertheless, the CCC was 0.001 (CI: - 0.001 - 0.003). We could not detect any differences in the bacterial load of the teat ends between the lactation numbers. Results of the Kruskal-Wallis test are presented in Table 2. 19
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination Table 1: Calculations of log10 cfu/mL and log10 cfu/teat end of 132 teat skin pairs classified by wet/dry swab technique and dipping technique. Concordance correlations coefficient (CCC) is given to evaluate the inter-rater reliability. Pathogen group Wet/dry swab technique Dipping technique CCC1 Median Median Median Median [log10 cfu/teat [log10 cfu/teat [log10 cfu/mL] [log10 cfu/mL] end] end] (Minimum - (Minimum - (Minimum - (Minimum - Maximum) Maximum) Maximum) Maximum) 0.112 Total aerobic 5.008 5.309 3.374 4.975 (CI: 0.057 - mesophilic bacteria (3.107 - 6.477) (3.407 - 6.778) (1.653 - 6.233) (3.149 - 7.835) 0.165) 0.008 1.301 1.477 1.000 1.000 Coliform bacteria (CI: 0.005 - (1.000 - 3.138) (1.000 - 3.438) (1.000 - 2.952) (1.000 - 4.549) 0.010) 0.001 Esculin positive 2.249 2.538 1.000 1.000 (CI: -0.001 - streptococci (1.000 - 4.477) (1.000 - 4.778) (1.000 - 2.975) (1.000 - 4.573) 0.003) 1Strength-of-agreement criteria for Lin’s concordance correlation coefficient by McBride [24] > 0.99 almost perfect agreement 0.95 - 0.99 substantial agreement 0.90 - 0.95 moderate agreement < 0.90 poor agreement Table 2: Ranking means of teat end microbial loads of 132 teats examined by wet/dry swab technique, classified by lactation number and pathogen group. The Kruskal-Wallis test was performed to test for lactation-dependent differences in the microbial load of teat skin. Aerobic mesophilic Esculin-positive Coliform bacteria, cfu/mL, No. Lactation N bacteria, cfu/mL, streptococci, cfu/mL, ranking means ranking means ranking means 1 54 63.558 60.417 64.278 2 22 56.750 83.614 73.955 3 28 71.036 63.446 65.786 4 28 70.446 67.839 65.643 p-value1 132 0.491 0.089 0.791 1 p < 0.05, results of the Kruskal-Wallis test 20
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2.5. Discussion Swabbing surfaces to determine their bacterial load is one of the oldest methods for this purpose. This sampling procedure is easy to handle for researchers and can be applied in places which are difficult to access as well as requiring low expenditure in terms of equipment and time. Referring to the above-mentioned points, the swabbing method has become a widely used method in many studies [11,17,18,26]. On the other hand, the high work-load involved in preparing and processing the swabs and the deficiencies of a standardized procedure are regarded as disadvantages. Above all, the inconsistency of the pressure applied on the swabs for removing bacteria from surfaces is to be mentioned [18]. In order to standardize the method for determining the microbial load on the teat, we tried to verify a comparative method, which could lead to similar results as the more complicated method described above. With regard to the microbial load on teat skin, Paduch & Krömker [17] reported similar results for wet/dry skin swabs as we did. They found that the largest populations on teat skin were S. uberis (maximum: 6.48 log10 cfu/mL) and coliforms (maximum: 6.48 log10 cfu/mL). These results were comparable with those of our study, whereby the largest populations of environmental pathogens were esculin-positive streptococci (maximum: 4.477 log10 cfu/mL) found in wet/dry teat skin swabs. It can therefore be suspected that esculin-positive streptococci mainly originated from the environment which the cows’ teats were exposed to for most of the day or that esculin-positive streptococci are a part of the teat skin flora [6,14]. The latter disagrees with findings of other researchers examining the microbial teat skin flora, by showing that esculin- positive streptococci can be influenced by bedding and milking hygiene [19,25]. On the contrary, the median amount of these streptococci in our study (median: 2.249 log10 cfu/mL) was above those values published by Paduch & Krömker (median: 1.71 log 10 cfu/mL) [17] as we considered all streptococci, hydrolyzing esculin (S. uberis, Lactococcus spp., Enterococcus spp.), while Paduch & Krömker only referred to S. uberis, subcultivated on modified Rambach agar. The median values for coliforms differed slightly in both studies. The different results for esculin-positive streptococci and coliforms can be explained by the larger sample size examined by Paduch & Krömker [17] (n = 839 teat skin swabs from 32 herds), therefore leading to a wider variation in teat skin bacterial load. These differences reveal that the udder skin is not a uniform system and that the bacterial population differs from udder to udder [27]. 21
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination Reasons for this might be physiological or environmental selective processes, possible preferences of microorganisms for particular udder sites or any bacterial antagonism mechanisms [26]. Furthermore, the above listed individual influence of the sampling itself might be responsible for differing results. Cullen & Herbert [27] observed fluctuations in bacterial load of staphylococci on teat skin throughout the year, considering seasonal changes and changing stages of lactation. Furthermore, antagonistic organisms on teat skin, particularly Staphylococcus chromogenes, are suspected to affect the presence of other organisms [28]. Another source of differences to the above-named study of Paduch & Krömker [17] could be that cows from different numbers of lactation were sampled in different proportions in the studies. It is not mentioned in which ratio the primiparous and multiparous cows were sampled. Rowbotham & Ruegg, 2016 [6] concluded that primiparous cows have less bacterial teat load than multiparous cows, which, in turn, leads to different study results depending on whether more primiparous or multiparous cows are tested. Although the amount of cows per number of lactation is low in the present study, the number of lactations is not decisive because both methods were tested on the same cow in a split-udder design. To determine the extent of influence of parity on teat skin bacterial load, we used the findings of the wet/dry swab technique. However, remarkable differences could not be found for all pathogen groups, which means that teat end bacterial load does not depend on the number of lactations in the current study, as reflected in our results for wet/dry swabs. With regard to teat skin bacterial load, varying correlations clarify that it is affected by several factors. Referring to the CCC described by Lin, 1989 [21], comparing data of the new dipping technique with the wet/dry swab technique for investigating teat end bacterial load showed large differences between the two methods for esculin-positive streptococci as well as for coliform counts. Highest concordance between the results of the two measurement series existed with the total aerobic mesophilic bacteria, where the CCC was 0.112, which, however, describes a poor agreement [24] . In addition, the bacterial loads per teat end determined by the dip technique were basically lower than those values determined with the wet/dry swab technique. This probably results from the fact that the dipping solution cannot remove a sufficient number of bacteria from the teat skin in the short duration of time. Prolonging the dipping time could cause the results of the samplings to converge. In a pilot study, 22
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination different immersion times were tested, wherein five seconds turned out to be the longest span accepted by the cows. However, the dipping method actually sampled a greater teat area, as the swabs only dabbed the side walls of the lower 1 cm of the teat, whereas the dipping solution also covered the teat apex with the teat canal orifice. On the other hand, the dipping technique does not involve the mechanical action of wiping, as with the wet/dry swab technique, so that a lower yield could be expected for the dipping technique. Thus, the reasons for the poor concordance of the methods could be the differences in location, surface sizes and the mechanical impacts. Determining bacterial load is a destructive method, one sampling excluding a subsequent one, since the bacterial load after the first sampling would of course be reduced regardless of which sampling method is carried out first [29]. Therefore, we used the split udder design, although we presumed that different teats would also differ in their teat skin bacterial load. Furthermore, lower bacterial counts produced by the dipping method were suspected to be a result of the higher volume and the higher dilution of Ringer’s solution. While establishing the method, we tried to keep the volume as low as possible but the limiting factor was the sampling vessel, which had to be large enough for the teats to fit in and to dip them in the solution. For both techniques, time and effort in the laboratory was the same. Without having measured the time for sampling, the time required for the dipping technique seems to be less, as the two swabs have to be taken out of their sterile packages one by one. However, after some repetitions, the wet/dry swab technique with two swabs is a practicable method as well. It also has to be noted that the Ringer’s solution for the dipping technique should be at room temperature. Otherwise, there was a massive defense reaction by the cows. Neither for esculin-positive streptococci nor for coliforms was the CCC greater than 0.112, which was calculated for total mesophilic counts. This means that the dipping method only produces results compared to those of the wet/dry swab technique with poor concordance. The median values of each method for each pathogenic group differ with inconsistently wide ranges, which might be unacceptable for standardized measurements. 23
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2.6. Conclusion In general, teat skin bacterial load is affected by many factors and alongside many other influences it can affect udder health. Our investigations showed that determining teat skin bacterial load with the tested dipping technique does not produce similar results to those when using the wet/dry swab technique. Dipping the teats in the test medium does not produce equivalent results or results that correlate sufficiently well with those gained from swabbing the teats. In addition, the procedure appears neither faster nor easier to handle. 24
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 2.7. References 1. Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003;34(9):475-491. 2. Hogeveen H, Huijps K, Lam TJGM. Economic aspects of mastitis: New developments. NZ Vet J. 2011;59(1):16-23. 3. Watts JL. Etiological agents of bovine mastitis. Vet Microbiol. 1988;16(1):41-66. 4. Makovec JA, Ruegg PL. Results of Milk Samples Submitted for Microbiological Examination in Wisconsin from 1994 to 2001. J Dairy Sci. 2003;86(11):3466- 3472. 5. Haveri M, Hovinen M, Roslöf A, Pyörälä S. Molecular types and genetic profiles of Staphylococcus aureus strains isolated from bovine intramammary infections and extramammary sites. J Clin Microbiol. 2008;46(11):3728-3735. 6. Rowbotham RF, Ruegg PL. Bacterial counts on teat skin and in new sand, recycled sand, and recycled manure solids used as bedding in freestalls. J Dairy Sci. 2016;99(8):6594-6608. 7. Pinzón-Sánchez C, Ruegg PL. Risk factors associated with short-term post- treatment outcomes of clinical mastitis. J Dairy Sci. 2011;94(7):3397-3410. 8. Pankey JW. Premilking Udder Hygiene. J Dairy Sci. 1989;72(5):1308-1312. 9. Guarín JF, Baumberger C, Ruegg PL. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding. J Dairy Sci. 2017;100(2):1436-1444. 10. Svennesen L, Nielsen S, Mahmmod Y, Krömker V, Pedersen K, Klaas I. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. J Dairy Sci. 2019;102(1):1-11. 11. Rendos JJ, Eberhart RJ, Kesler EM. Microbial Populations of Teat Ends of Dairy Cows, and Bedding Materials. J Dairy Sci. 1975;58(10):1492-1500. 12. Paduch JH, Mohr E, Krömker V. The association between teat end hyperkeratosis and teat canal microbial load in lactating dairy cattle. Vet Microbiol. 2012;158(3-4):353-359. 13. De Visscher A, Supre K, Haesebrouck F, Zadoks RN, Piessens V, Van CoillieE et al. Further evidence for the existence of environmental and host-associated species of coagulase-negative staphylococci in dairy cattle. Vet Microbiol. 2014;172:466-474. 14. Baumberger C, Guarín JF, Ruegg PL. Effect of 2 different premilking teat sanitation routines on reduction of bacterial counts on teat skin of cows on commercial dairy farms. J Dairy Sci. 2016;99(4):2915-2929. 25
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 15. Verdier-Metz I, Gagne G, Bornes S, Monsallier F, Veisseire P, Delbes-Paus, C, et al. Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl Environ Microbiol. 2012;78(2):326-333. 16. De Vliegher S, Laevens H, Devriese LA, Opsomer G, Leroy JLM, Barkema HW et al. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation. Vet Microbiol. 2003;92(3):245-252. 17. Paduch JH, Krömker V. Besiedlung von Zitzenhaut und Zitzenkanal laktierender Milchrinder durch euterpathogene Mikroorganismen. [Colonization of the teat skin and the teat canal by mastitis pathogens in dairy cattle.] Tierarztl Prax. Ausgabe Grosstiere - Nutztiere. 2011;39(2):71-76. 18. Pfannenschmidt F. Eignung des Nass-Trockentupfer Verfahrens (NTT) DIN 10113; 1997-07 zur Bestimmung des Hygienestatus in Melkanlagen [dissertation]. Tierärztliche Hochschule Hannover, 2003. 19. Paduch JH, Mohr E, Krömker V. The association between bedding material and the bacterial counts of Staphylococcus aureus, Streptococcus uberis and coliform bacteria on teat skin and in teat canals in lactating dairy cattle. J Dairy Res. 2013;80(2):159-164. 20. Guarín JF, Ruegg PL. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J Dairy Sci. 2016;99(10):8323-8329. 21. Lin LI-K. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989;45:255-268. 22. Watson PF, Petrie A. Method agreement analysis : A review of correct methodology. Theriogenology. 2010;73(9):1167-1179. 23. Koch R, Spoerl E. Statistische Verfahren zum Vergleich zweier Messmethoden und zur Kalibrierung : Konkordanz-, Korrelations- und Regressionsanalyse am Beispiel der Augeninnendruckmessung. [Statistical Methods for Comparison of Two Measuring Procedures and for Calibration: Analysis of Concordance, Correlation and Regression in the Case of Measuring Intraocular Pressure.] Klin Monatsbl Augenheilk. 2007;224:52–57. 24. McBride G. A proposal for strength-of-agreement criteria for Lin’s Concordance Correlation Coefficient. NIWA Client Rep. 2005;45(1):307-310. 25. Monsallier F, Verdier-Metz I, Agabriel C, Martin B, Montel MC. Variability of microbial teat skin flora in relation to farming practices and individual dairy cow characteristics. Dairy Sci Technol. 2012;92(3):265-278. 26. Guarín JF, Baumberger C, Ruegg PL. Anatomical characteristics of teats and premilking bacterial counts of teat skin swabs of primiparous cows exposed to different types of bedding. J Dairy Sci. 2017;100(2):1436-1444. 26
Publikation I: Comparison of two teat skin sampling methods to quantify teat contamination 27. Cullen GA, Hebert CN. Some ecological Observations on Microorganisms inhabiting Bovine Skin, Teat Canals and Milk. Br Vet. J. 1967;123(1):14-25 28. De Vliegher S, Opsomer G, Vanrolleghem A, Devriese LA, Sampimonc OC, Sol J, et al. In vitro growth inhibition of major mastitis pathogens by Staphylococcus chromogenes originating from teat apices of dairy heifers. Vet Microbol. 2004;101(3):215-221. 29. Merli D, Amadasi A, Mazzarelli D, Cappella A, Castoldi E, Ripa S, et al. Comparison of Different Swabs for Sampling Inorganic Gunshot Residue from Gunshot Wounds: Applicability and Reliability for the Determination of Firing Distance. J. Forensic Sci. 2018;24:1-7. 27
Publikation II: Bacterial load of the teat apex skin and associated factors at herd level 3. Publikation II: Bacterial load of the teat apex skin and associated factors at herd level (Bakterielle Belastung der Zitzenspitzenhaut und damit verbundene Faktoren auf Herdenebene) Maria-F. Hohmann1, Nicole Wente1, Yanchao Zhang1, Volker Krömker1,2 1Fakultät II, Abteilung für Bioverfahrenstechnik – Mikrobiologie, Hochschule Hannover 2 Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, Section for Production, Nutrition and Health, University of Copenhagen, Gronnegardsvej 2, 1870, Frederiksberg C, Denmark Animals Eingereicht: 20.08.2020 Akzeptiert: 10.09.2020 28
Publikation II: Bacterial load of the teat apex skin and associated factors at herd level 3.1. Simple Summary The bacterial load on the teat apex of dairy cows, causing intramammary infections, is to a large extent due to environmental impact. The aim of our study was to describe factors at herd level that are associated with bacterial load of environmental mastitis pathogens on the teat end’s skin. On visits to 31 dairy farms over a one-year period, farm conditions were documented and environmental bacterial loads were examined. We found seasonal fluctuations and direct correlations between the temperature- humidity index (THI) in the barn and the bacterial load at the teat end. Significantly more environmental mastitis pathogens were found in herds with a high percentage of normal and slightly rough teat ends. The time since the last fresh bedding was added to the cubicles as well as the frequency in which cubicles were cleaned also effect the pathogen load on the teat skin. Pre-cleaning teats before milking as well as post- dipping after milking showed a decreasing effect of teat skin bacterial load at herd level. 3.2. Abstract In order to reduce antimicrobial treatment and prevent environmental mastitis, the aim of the present study was to investigate associations between herd level factors and microbial load on teat ends with environmental mastitis pathogens. Quarterly farm visits of 31 dairy farms over a one-year period were used for statistical analysis. During each farm visit, teat skin swabs, bedding and air samples were taken, and management practices and herd parameters were documented. Total mesophilic bacteria, esculin-positive streptococci and coliform bacteria were examined in the laboratory procedures from teat skin and environmental samples. Esculin-positive streptococci and coliform bacteria on teat ends increased with high THIs in the barn and during the spring and summer. Significantly more coliform bacteria on teat ends were found in herds with an increased percentage of normal or slightly rough teat ends. Cleaning cubicles more frequently, pre-cleaning teats before milking as well as post- dipping them after milking had a decreasing effect of teat skin load with total mesophilic and coliform bacteria at herd level. To conclude, teat skin bacterial load with environmental pathogens is subjected to fluctuations and can be influenced by hygienic farm aspects. Keywords Teat end colonization, mastitis pathogens, wet-dry swab technique, bedding, season 29
Publikation II: Bacterial load of the teat apex skin and associated factors at herd level 3.3. Introduction Bovine mastitis, inflammation of the mammary gland, is a complex disease considering its etiology and pathogenesis. As reducing antimicrobial usage is a social concern as well as mastitis causes economic losses (reduced milk yield, discarded milk, culls, therapy costs), it is necessary to further characterize causative pathogens in order to develop control strategies [1,2]. A wide variety of microorganisms are discussed as being responsible for the development of mastitis. These can be epidemiologically categorized into contagious, originating from infected quarters, or environmental, located in the surroundings of dairy cows [3-6]. While the prevalence of contagious mastitis has been reduced by control programs in recent years, environmental pathogens are becoming increasingly important [4]. Most prevalent environmental microorganisms isolated in milk samples of clinical mastitis cases occurring on German dairy farms are esculin-positive streptococci, Escherichia coli and Klebsiella spp. [7]. The teat skin seems to act as a reservoir of microorganisms, especially Gram- positive catalase-positive bacteria including coagulase-negative staphylococci [8]. Pathogenic bacteria can enter the udder through the teat canal and might cause intramammary infection (IMI). In recent years, many authors have shown that teat end bacterial load can affect udder health [9-11]. To gain more information concerning the variation in the bacterial load on teat epithelia, some researchers described methods quantifying teat end bacterial load. The wet-dry swab technique, described by Paduch and Krömker [12], enables a semi-quantitative investigation of the teat end colonization. Some genera of physiological teat skin flora are stated to inhibit some isolates of mastitis pathogens [13,14]. Nonetheless, generally, the microbial community of the teat surface depends on the respective farm environment. Monsallier et al. [8] showed that farming practices could interact with microbial flora on teat skin. Early on, it was recommended to reduce the environmental pathogen contamination of the teat end as a method for controlling environmental mastitis [15]. Cows spend most of the day lying down, making bedding a primary source for environmental pathogens to stick onto the teat end skin. It has been published that numeric differences in the distribution of Streptococcus spp., Staphylococcus spp., and Gram-negative bacteria on teat skin are linked to different kinds of bedding materials [6,16,17]. Furthermore, some researchers observed a reduction in teat skin bacterial load of environmental 30
Sie können auch lesen