MATH BULLETIN FS 2018 - UZH

Die Seite wird erstellt Finn-Luca Nowak
 
WEITER LESEN
MATH BULLETIN FS 2018 - UZH
MATH BULLETIN FS 2018
MATH BULLETIN FS 2018 - UZH
Editorial.                                               2   Neues aus dem
                                                             FVM.

Der Herbst neigt sich zu Ende, das Semester
neigt sich zu Ende, bald beginnt ein neues Jahr,
ein neues Semester und die Chance unser
                                                         4   Beweis­
                                                             methoden.

Wissen zu erweitern. Bis dahin sind noch viele
Prüfungen       zu   meistern,    doch   vor
Prüfungsstress geniesst die Weihnachtszeit
und erholt euch. In dieser Ausgabe erhält ihr
                                                 dem
                                                         6   Was passiert am
                                                             Institut?

einen       kleinen       Einblick       in       die
Forschungsgruppe
Ayoub.
                        von      Professor

Wir wünschen euch viel Spass beim Lesen und
                                               Joseph
                                                         9   Witz­ und
                                                             Rätselecke.

viel Erfolg bei den Prüfungen.

Liebe Grüsse,
Sarina Sutter und Stefan Kurz
                                                        11 Vorlesungs­
                                                           verzeichnis
                                                         UZH.

                                                        27   Forschungs­
                                                             seminare.

                                                        28   Vorlesungs­
                                                             verzeichnis ETH.

MATH BULLETIN FS 2018                                                           1
MATH BULLETIN FS 2018 - UZH
Neues aus dem FVM.
Grosse personelle Veränderungen im Vorstand, der Fachverein
erhält eine eigene Flagge und ein wichtiger Hinweis für euch.

Vorstandsänderungen                              Vinzenz Muser / Marc Egger: Unser
                                                 langjähriges Präsidialteam, das den FvM
An der letzten MV (lang ist’s her...)            zu Ruhm und Ehre geführt hat!
durften wir feierlich eine ganze Reihe           Nathan Brack: Unser Ex­Kassier, unter
neuer Vorstandsmitglieder aufnehmen:             dessen finanzieller Aufsicht sich unser
Stefan Kurz: Der Mann der frühen                 Geld beträchtlich vermehrt hat!
Morgenstunden, neu verantwortlich für            Simon Grüning: Unser Top­Journalist!
die Zensur.                                      Euch allen ein riesiges Dankeschön für
Annina Cincera: Unsere gute Seele mit            eure Arbeit, ihr werdet sie vermissen!
einem riesigen Herz für Erstsemestler
und Maturanden/­innen.                           Vereinsflagge
Lukas Burch: Der Mann des schnellen
Aufstiegs, unser neuer Vizepräsident.            Und   natürlich das Wichtigste: Unser
Gian Deflorin: Berater des Präsidiums,           Verein bekommt eine Flagge, die wir im
Präsident      des      Teegremiums       und    nächsten Semester feierlich einweihen
nebenbei               Vertretung          im    werden!
Mathematikerrat.
David Berger: Unser neuer Mann fürs              Kafferahm
Seriöse, er wird uns künftig beim Cüpli
trinken mit dem Dekan vertreten.                 Gelegentlich      beschäftigt       sich   der
Kilian Werder: Unser neuer Finanzboss            Vorstand ja auch mit seriösen Themen,
(ab FS 18).                                      deshalb     zu   guter     Letzt   noch    eine
Im     Namen     des     ganzen     Vorstandes   wichtige Mitteilung: Bitte konsumiert
wünschen wir euch allen eine erfüllende          keinen       Kaffeerahm            aus     der
Vorstandsarbeit            mit          vielen   Institutsküche, das gilt nach wie vor. Der
Glücksausbrüchen!                                gehört uns nicht. Das meinen wir ernst.
Mit diesen Neuwahlen waren natürlich             Wirklich.
auch          schmerzliche          Abschiede
verbunden:                                                           ~ Alain Schmid

2                                                                         MATH BULLETIN FS 2018
Beweismethoden.
Proof by vigorous handwaving: Works well in a classroom or seminar setting.

Proof by forward reference:    Reference is usually to a forthcoming paper of the
                               author, which is often not as forthcoming as at first.

Proof by example:              The author gives only the case n = 2 and suggests
                               that it contains most of the ideas of the general
                               proof.

Proof by omission:             "The reader may easily supply the details" or "The
                               other 253 cases are analogous"

Proof by deferral:             "We'll prove this later in the course".

Proof by picture:              A more convincing form of proof by example.
                               Combines well with proof by omission.

Proof by intimidation:         "Trivial."

Proof by adverb:               "As is quite clear, the elementary aforementioned
                               statement is obviously valid."

Proof by seduction:            "Convince yourself that this is true! "

Proof by exhaustion:           An issue or two of a journal devoted to your proof is
                               useful.

Proof by mutual reference:     In reference A, Theorem 5 is said to follow from
                               Theorem 3 in reference B, which is shown to follow
                               from Corollary 6.2 in reference C, which is an easy
                               consequence of Theorem 5 in reference A.

3                                                                MATH BULLETIN FS 2018
MATH BULLETIN FS 2018   4
Was passiert am Institut?
Vorstellung der Arbeit der Forschungsgruppe von Professor Dr.
Joseph Ayoub.

One    of   the   biggest    successes        of   numbers, or at least the real numbers.
Mathematics during the      XXth   century is      Equations over finite fields, for example,
the developing of algebraic topology to            seemed to be out of the scope of
study Geometry. We call “algebraic                 algebraic topology, due to the “discrete”
topology” to the techniques attaching in           nature of their solutions.
a natural way to every geometric space
an algebraic object—e.g.: a group, a               In 1949, André Weil made four far
vector space—that encodes geometric                reaching conjectures in Arithmetic and
properties of the space. Hence, we                 Algebraic Geometry over finite fields.
reduce the study of the geometry of a              To   be     more        precise,     given       some
space to simpler questions related to              algebraic      equations           with     rational
these algebraic objects. Probably the              coefficients      we      can      consider       the
most   successful   of   these         algebraic   algebraic variety they define modulo p.
topology techniques is the one called              Then,      Weil     conjectured           that    the
“cohomology” which, in its simplest                analogue of the Riemann hypothesis for
form, attaches a finite dimensional                finite fields holds for the associated
vector space to a given geometric space.           analogue of Riemann’s Zeta function.
Many theorems, such as the topological             Even more, the Riemann’s Zeta function
classification of surfaces, Gauss­Bonet            was strongly related to the cohomology
formula, fixed point theorems, existence           of the variety defined by its complex
of a relativistic structures, etc… can be          solutions.        Weil        conjectures         led
solved thanks to these techniques.                 Alexander Grothendieck to believe that
                                                   there should be unifying roots for
As we have said, since its beginnings              Topology, Geometry (both Differential
algebraic   topology     had       a     strong    and Algebraic) and Arithmetic: the
influence in Topology and Differential             cohomology         of     a   complex        variety
and Complex Geometry.          However, in         (Complex Geometry, and Topology) was
principle algebraic geometers could not            strongly     determining            its    algebraic
profit from these techniques, unless               solutions (Algebraic Geometry) to the
they were working over the complex                 extend that we can prove the analogue

MATH BULLETIN FS 2018                                                                                  5
Riemann’s hypothesis over finite fields               introduced the notion of a motive in a
(Arithmetic).                                         letter to Serre in 1964. Later he wrote
                                                      that, among the objects he had been
Between 1957 and 1970 Grothendieck                    privileged to discover, they were the
and    his      collaborators      refounded          most charged with mystery and formed
Algebraic Geometry and set up a                       perhaps the most powerful instrument
common unifying ground of work for                    of discovery.1 Motives should be the
algebraic topology. This set up could be              object behind all cohomology theories,
applied in Algebraic Geometry and                     which are their avatars. Their name,
Arithmetic as well in Topology and                    “motif”, suggests it. As the motive
Differential    Geometry,       and     it     led    melody in music, which we can make
Grothendieck to prove three of the Weil               several variations or avatars in different
conjectures. After his retirement in 1970,            styles, or of an image in painting2
one of his students, Pierre Deligne,                  motives in Mathematics would be the
finally proved in 1974 the last Weil                  reason and the leading intuition behind
conjecture.     However,        despite        the    many        analogue       phenomena        in
enormous success of this program                      Arithmetic and Geometry, such as
Grothendieck was not satisfied. His                   cohomologies.
framework allowed to define a pleiad of
cohomology       theories   for       algebraic       Unfortunately, Grothendieck gave only
varieties: étale cohomology, crystalline              the guidelines of the theory of motives.
cohomology,          coherent                sheaf    Since then this subject has been one of
cohomology…        However,       the        direct   the    major    topics     of    research   for
analogue of the classic cohomology                    Arithmetic and Algebraic Geometry.
with rational coefficients in Differential            Professor      Ayoub’s     and     its   group
Geometry and Topology was not found.                  research lies precisely in the field of
Even more, Jean­Pierre Serre gave a                   motives. This area of Mathematics has
counterexample to the possibility that                very clear objectives:           Grothendieck
such     cohomology         could            exist.   before his retirement in 1970 set up the
Nevertheless all cohomologies found by                so called “Standard conjectures” that
Grothendieck behaved as if they were                  would unlock the theory of motives.
avatars of this non­existing analogue of              Although these conjectures still remain
the Differential Geometry one.                        completely open until today, the world
                                                      of motives has seen an unprecedented
Before retiring in 1970, Grothendieck                 renewed progress in the last 20 years,

6                                                                              MATH BULLETIN FS 2018
having Professor Ayoub as one of the                  achieving a proof of the Grothendieck
leading contributors. We will list only               or Kontsevich­Zagier conjecture in what
some of his main achievements in this                 is called the relative case.
topic.
                                                      Finally, a remarkable contribution of
Firstly, Professor Ayoub provided the                 Professor Ayoub is currently being
world of motives with a satisfactory                  achieved. One of the main roadblocks of
technical theory called “Grothendieck’s               the desired standard conjectures is that
six functor formalism”. This technical                they require to prove “existence of
theory is the basic tools that allowed                cycles”. In other words, we require to
Grothendieck        to    give      a    common       construct algebraic subvarieties with
framework        for     algebraic       topology.
                                                      prescribed properties. Constructing
Hence, a motivic version of the six
                                                      subvarieties with prescribed properties
functor formalism was certainly to be
                                                      in the case of Differential Geometry,
placed in the realm of motives.
                                                      where there are partitions of the unity
                                                      and quite some flexibility to construct
One of the most interesting objects in
                                                      subvarieties, is often quite manageable.
the theory of motives is the so called
                                                      In Algebraic Geometry this is not the
“motivic Galois group”. This group
                                                      case. Indeed, even the simplest linear
encodes          properties             of      the
                                                      algebraic differential equation, δy­xδx,
cohomological avatars of motives and,
among them, it was conjectured to                     has the exponential as solution and, as a

govern a very important class of                      consequence, it has no algebraic
numbers called “multiple zeta values”.                solutions. Hence, there is very little
These numbers, a generalization of the                freedom. In the case of curves, where
values of Riemann’s Zeta function at the              subvarieties are simply points, this
integers, appear not only in the theory               problem leads to the Riemann­Roch
of       transcendence        and        algebraic    theorem, which is one of the major
elements,     but      they   also       play   an    theorems of algebraic curves. However,
important role in quantum mechanics.                  in higher dimensions the problem
In this area the main conjecture is                   becomes more difficult. To put it in few
known       as    the      Grothendieck         or    words, very little is known on existence
Kontsevich­Zagier conjecture. Professor               of cycles, and too much is required for
Ayoub made important contributions to                 the standard conjectures. However, the
the study of the motivic Galois group,

MATH BULLETIN FS 2018                                                                             7
so called “conservativity conjecture” of
motives states that the cohomological
avatars of motives preserve (or conserve)
a lot of information from the motive, and
a very important one from algebraic
subvarieties. In particular this conjecture
directly implies the existence of cycles in
a great general setting and it would
certainly be a major advance for the
theory of motives. Professor Ayoub has a
tentative proof of the conservativity
conjecture which is currently being
checked. A seminar will be run next
semester on our University about the
validity of this proof.

      ~ Alberto Navarro Garmendia
Witz­ und Rätselecke.
Zusammengestellt von Sarina Sutter und Stefan Kurz.

            Who invented the round table?               2 +1) fall o
                                                                     ver?
                                              d th e ( x
                                       Why di                          t s.
                                                              real roo
            Sir Cumference
                                                     a d  n o
                                              e it h
                                       Becaus
    Why didn't sin and tan go                     Why didn't the Romans
    to the party?                                 find        algebra very
    Just cos.                                     challenging?
                 How
                        m
                to ch any mat
                                                  Because X was always 10.
                       ange         hem
              O ne.           a ligh        at ic
                       S he          t bulb an does
            t hus            g               ?        it t ak
                     redu ives it to                          e
           a l re a       c in            t h
                    dy be g it to a e 3 phys
                           en so         pr       ici
                                  lved. oblem th sts,
                                                  at ha
                                                          s

                The B in Benoit B. Mandelbrot
                stands for Benoit B. Mandelbrot.
    What do
              y
    apples an ou get if you a
             d three a          dd two
    A middle           pples?
             school m
                       ath proble
                                  m.              a t i on?
                                         y  e qu
                                   v e an y 0.
                                 l
                               so ides b
                           o u
                   w  do y both s
                 Ho ltiply       How to make one burn?
                 Mu              Differentiate a log fire.

9                                                              MATH BULLETIN FS 2018
Square Factorials
Multiply together the first 100 factorials 1!x...x100!. Find a natural number n, such
that dividing this product by n! produces a square number.

Odd squares

How many square numbers are these, whose digits are all odd?

Blackboard

Suppose that numbers 1 to 20 are written on a blackboard. At each turn, you may
erase two numbers a and b and write the sum a+b in their place. After 19 such turns,
there will be one number left at the blackboard. What will this number be?

Odd sums

What is (1+3)/(5+7)? What is (1+3+5)/(7+9+11)? What is (1+3+5+7)/(9+11+13+15)?
What is (The sum of first n odd numbers)/(The sum of the next n odd numbers)?

Great Riddles reprinted with permission from Matthew Scroggs,
Find the solutions and more at mscroggs.co.uk

10                                                              MATH BULLETIN FS 2018
Vorlesungsverzeichnis UZH.
MAT 112 Lineare Algebra II (9 ECTS)
Euklidische und normierte Vektorräume
Bilinearformen und Skalarprodukte
Orthonormalbasen und Gram­Schmidt­Orthogonalisierung
Spektralsatz fuer selbsadjungierte Endomorphismen
Normalform symmetrischer Bilinearformen
Quadratische Formen
Unitäre Vektorräume
Spektralsatz für normale Endomorphismen
Tensor Produkte und deren universelle Eigenschaften
Symmetrische und alternierende Tensoren

Dozierende: Anna Beliakova

MAT 122 Analysis II (12 ECTS)

Topologie des Euklidischen Raums
Differentialrechnung mehrerer Variablen
Taylorentwicklung, lokales Verhalten einer Abbildung, Konvexität
Satz ueber die Umkehrabbildung, Satz über implizite Funktionen
Untermannigfaltigkeiten des Euklidischen Raums.
Lokale Extrema mit Nebenbedingungen.
Vektoranalysis: Vektorfelder, Rotation, Divergenz, Gradient.
Elementare Lösungsmethoden für gewöhnliche Differentialgleichunten. Lineare
Systeme von gewöhnlichen Differentialgleichungen, Exponential einer Matrix.
Existenz und Eindeutigkeitssatz für gewöhnliche Differentialgleichungen.
Differenzierbare Abhängigkeit, Fluss eines Vektorfeldes.
Folgen und Reihen von Funktionen. Fourierreihe.

Dozierende: Viktor Schroeder

MATH BULLETIN FS 2018                                                         11
MAT 801 Numerik I (9 ECTS)

Grundlegende Konzepte werden eingeführt. Effiziente Berechnungsmethoden für
relativ einfache mathematische Probleme werden vorgestellt.
Inhaltsübersicht:
Zahlendarstellung und Rundungsfehler, numerische Verfahren für lineare und
nichtlineare   Gleichungen,   Approximation     und    Interpolation,   numerische
Integration, numerische Methoden für Differentialgleichungen.

Dozierende: Alexander Veit

MAT 901 Stochastik (9 ECTS)

Die Fähigkeit, die grundlegenden Ideen der Wahrscheinlichkeitsrechnung sowohl
theoretisch als auch in Anwendungen einzusetzen.

Voraussetzungen: MAT 111 Lineare Algebra, MAT 121 Analysis und MAT 221
Analysis III

Dozierende: Jean Bertoin

MAT 506 Kommutative Algebra (9 ECTS)

Es wird eine Einführung in die kommutative Algebra gegeben, die sich an
Studierende ab dem 4. Semester richtet. Die kommutative Algebra befasst sich mit
den kommutativen Ringen. Einfache Beispiele solcher Ringe sind der Ring der
ganzen Zahlen, Polynomringe über Körpern und deren Restklassen und Bruchringe.
Die kommutative Algebra ist ein wirksames Werkzeug für die algebraische und die
analytische Geometrie, für die Zahlentheorie aber auch für die Kombinatorik und
Algorithmik. Das Gebiet ist sehr reichhaltig und vermag deshalb sicher auch für sich
alleine genommen algebraisch interessierte Hörerinnen und Hörer anzusprechen.
Im Zentrum unserer Vorlesung steht die Theorie der noetherschen lokalen Ringe.
Höhepunkt ist die homologische Charakterisierung der regulären Ringe gemäss

12                                                              MATH BULLETIN FS 2018
Serre, Auslander und Buchsbaum und deren Anwendung. Die benötigten Begriffe
aus der homologischen Algebra werden in der Vorlesung mit entwickelt. Im
einzelnen werden folgende Themen behandelt:
1. Noethersche Ringe und Moduln
2. Primideale
3. Krull­Dimension
4. Assoziierte Primideale
5. Tiefe
6. Cohen­Macaulay­Ringe
7. Projektive Dimension und Betti­Zahlen
8. Globale Dimension
9. Reguläre lokale Ringe
10.Faktorialität
11.Normalität
12.Ganze Erweiterungen und Primideale
13.Algebren über Körpern

Voraussetzungen: MAT211 Algebra I

Dozierende: Andrew Kresch

MAT 604 Funktionentheorie (9 ECTS)

This lecture is an introduction to the theory of holomorphic function in one variable.

Vorraussetzung: Analysis I & Lineare Algebra I

Dozierende: Valentin Féray

MATH BULLETIN FS 2018                                                                13
MAT 721 Differentiable Manifolds (9 ECTS)
Differenzierbare Mannigfaltigkeiten sind Mengen (wie z.B. die Sphäre), die lokal wie
ein Rn aussehen, so dass man die übliche Differential­ und Integralrechnung
verwenden kann: Auf differenzierbaren Mannigfaltigkeiten kann man z.B.
Differentialgleichungen    studieren     und   Funktionen         oder     Differentialformen
integrieren.
Die Vorlesung ist eine Voraussetzung für Vorlesungen in den Bereichen
Differentialgeometrie, Differentialtopologie, globale Analysis und mathematische
Physik. Die hier eingeführten Begriffe liegen auch zugrunde, u.a., der allgemeinen
Relativitätstheorie und der Eichtheorien.
Themen         der    Vorlesung:       Differenzierbare       Mannigfaltigkeiten         und
Untermannigfaltigkeiten. Vektorfelder, Flüsse und der Satz von Frobenius. Lie­
Gruppen, Prinzipal und assoziierte Bündel, Zusammenhänge.
Differentialformen, Integration und der Satz von Stokes.

Vorraussetzung:      Grundbegriffe     der   Analysis     I+II,   Lineare      Algebra   I+II,
Mehrfachintegrale, Differentialgleichungen

Dozierende: Alberto S. Cattaneo

MAT 753 Topology of surfaces (3 ECTS)

The course is considered as a continuation of „Topology and Geometry".
The main objects discussed are surfaces, two dimensional spaces that look locally
like a plane. The material will cover classification results, certain topological
invariants such as the Euler characteristic and homology, and will end with a
number of applications.

Voraussetzungen: Linear algebra, Topology & Geometry

Dozierende: Krzysztof Putyra

14                                                                       MATH BULLETIN FS 2018
MAT 754 An Introduction to Geometric Quantization (2
ECTS)
A classical mechanical system can be described by a symplectic manifold called the
state space and a distinguished observable, which is a function on the state space,
called the Hamiltonian. More generally, in classical mechanics we have the state
space a symplectic manifold and observables which are functions on the sympletic
manifold. In quantum mechanics, on the other hand, the state space is a Hilbert
space and the observables are operators on the Hilbert space.
Roughly speaking, Quantization of a classical theory is a process which associates a
quantum theory to the classical theory. Ideally, one would like to associate each
classical observable a quantum observable. This is impossible because there are no
go theorems. In practice, one has to lower one’s expectation so that there is a
"reasonable quantization" ofa classical system.
In this course, we will study one particular method of quantization called geometric
quantization. Position space quantization, moment space quantization and
holomorphic quantization are particular instances of geometric quantization.

Voraussetzungen: Some background on Analysis and manifolds will be helpful.

Dozierende: Santosh Kandel

MAT 832 Mathematische Modellierung (9 ECTS)

In der Vorlesung wird die mathematische und numerische Modellierung
physikalischer   Probleme      behandelt.   Die   Herleitung   der   Gleichungen   aus
physikalischen Prinzipien, deren Vereinfachung und effiziente numerische Lösung
stehen im Mittelpunkt dieser Vorlesung.

Voraussetzung: Numerik I

Dozierende: Stefan A. Sauter

MATH BULLETIN FS 2018                                                               15
MAT 512 Elliptische Kurven (9 ECTS)
Introductory course on the theory of elliptic curves, with a point of view towards
their applications in cryptography.
Elliptic curves and their equation, the group law on the points of an elliptic curve,
endomorphisms, j­invariant, elliptic curves defined over finite fields, K­rational
points, torsion points, Frobenius endomorphisms, Hasse's Theorem, Schoof's
algorithm, the Discrete Logarithm Problem in the group of points of an elliptic
curve, pairings, cryptographic protocols which exploit elliptic curves.

Voraussetzungen: Knowledge of the material covered in a basic algebra course (e.g.
MAT211 Algebra I) will be assumed. This includes, but is not limited to, groups
(finite groups, Chinese Reminder Theorem), rings (in particular polynomial rings),
fields, and their homomorphisms. Very basic knowledge of algebraic geometry
and/or cryptography will be helpful, but not required.

Dozierende: Joachim Rosenthal

MAT 525 Hopf algebras (9 ECTS)
This lecture is an introduction to the theory of Hopf algebras.

We introduce and discuss basic algebraic concepts (coalgebras, bialgebras, Hopf
algebras, Hopf modules and comodules, universal enveloping algebras). The
highlight of the lecture will be a proof of the Cartier­Kostant theorem for pointed
cocommutative Hopf algebras, that describes how a large class of Hopf algebras may
described as a smash product algebra composed out of the primitive and grouplike
elements.

Voraussetzungen: Linear Algebra I, II and Algebra

Dozierende: Benedikt Stufler

16                                                                MATH BULLETIN FS 2018
MAT 579 Lie groups and Lie algebras (9 ECTS)
This class is devoted to the analysis of Lie algebras and Lie groups, their structure
theory and their representations.
Lie groups are groups which are also a differentiable manifolds equipped then with
group operations compatible with the smooth structure. They represent the best­
developed theory of continuous symmetry of mathematical objects, which makes
them indispensable tools for many parts of contemporary mathematics and modern
theoretical physics; they provide, thus, a natural framework for analysing differential
equations and they play an enormous role in modern geometry, on several different
levels.
In this course, after a short recollection on basic facts on differentiable manifolds, we
introduce and discuss a relationship between Lie groups and Lie algebras. We will
then study representation theory of the simplest Lie algebras and finish the course
with the structure theory of general complex semisimple Lie algebras.

Voraussetzungen: MAT111 Lineare Algebra I & II, MAT121 Analysis I & II

Dozierende: Pavel Safronov

MAT 516 Analytic number theory (4 ECTS)

This course will introduce some of the fundamental theorems and results of classical
Analytic Number Theory.
The course will start with basic notions, including the fundamental theorem of
arithmetic, Euclid's theorem for the infinitude of primes, rational/irrational numbers
and it will continue with the study of arithmetic functions, perfect numbers and
Fermat numbers, congruences, quadratic residues, Dirichlet series and also aspects
of the prime counting function and the Riemann zeta function. During the class,
some special topics such as the proof of Chebyshev’s inequality will be presented as
well.

Voraussetzungen: Students who attend this course should have already followed a
course in Differential and Integral Calculus.

Dozierende:       Michail Rassias

MATH BULLETIN FS 2018                                                                  17
A First Course in Homotopy Theory (3ECTS)

Homotopy theory is one of the main branches of algebraic topology, which uses
various algebraic gadgets to decide when topological spaces have the same "shape".
The central idea of homotopy theory is to regard two topological spaces as "the
same" when they can be continuously deformed into one another, instead of asking if
they are homeomorphic to one another (the latter being a vastly stronger condition).
With some caveats, this weaker notion of equivalence is detected by the homotopy
groups of a space and so homotopy theory is largely about studying the behaviour of
these groups.
In this course, we will discuss a variety of core concepts of the theory including, but
not limited to;
­ Homotopy groups and long exact sequences
­ CW complexes and simplicial sets
­ Fibrations and cofibrations
­ The Whitehead and Hurewicz Theorems
­ Eilenberg­Mac Lane spaces
­ Postnikov and Whitehead towers
­ The Homotopy Excision Theorem
­ Rational Homotopy Theory

Voraussetzung: Geometrie & Topologie, Lineare Algebra

Dozierende: Vincent Schlegel

MAT927 Probabilistic models and methods in arithmetic (9
ECTS)

Voraussetzungen: MAT901 Stochastik I and MAT604 Funktionentheorie

Dozierende: Ashkan Nikeghbali

18                                                               MATH BULLETIN FS 2018
MAT 631 Mathematical aspects of quantum mechanics (6
ECTS)
In this course, we will consider selected tools in functional analysis playing an
important role in the mathematical study of quantum systems.
This will include the spectral theorem for unbounded operators, Stone’s theorem for
the unitary group generated by self­adjoint operators, perturbation theory. We will
discuss how these mathematical results can be applied to understand energetic and
dynamical properties of quantum systems. The course is addressed primarily to
advanced bachelor students and master students in mathematics, with some
experience in analysis. No prior knowledge of physics will be assumed.

Vorraussetzung: Analysis I­III

Dozierende: Benjamin Schlein

MAT 752 Advanced Topics in Field Theory (2 ECTS)

Dozierende: Alberto S. Cattaneo

MAT 827 Numerical Methods for Hyperbolic Partial
Differential Equations (10 ECTS)

­ Introduction to hyperbolic problems: Conservation, flux modeling, examples and
significance in physics and engineering.
­ Linear Advection equations in one dimension: Characteristics, energy estimates,
upwind schemes.
­ Scalar conservation laws: shocks, rarefactions, solutions of the Riemann problem,
weak and entropy solutions, some existence and uniqueness results, finite volume
schemes of the Godunov, Engquist­Osher and Lax­Friedrichs type. Convergence for
monotone methods and E­schemes.
­ Second­order schemes: Lax­Wendroff, TVD schemes, limiters, strong stability
preserving Runge­Kutta methods.
­ Linear systems: explicit solutions, energy estimates, first­ and high­ order finite

MATH BULLETIN FS 2018                                                              19
volume schemes.
­ Non­linear Systems: Hugoniot Locus and integral curves, explicit Riemann
solutions of shallow­water and Euler equations. Review of available theory.

Dozierende: Rémi Abgrall

MAT 946 (Random) Graphs with applications to risk
modelling (9 ECTS)

In this lecture, we introduce the most basic tools and facts about random graphs and
focus on applications to (systemic) risk modelling and the propagation of stress in a
financial network.

Voraussetzungen: Basic probability theory (Stochastic I and II).

Dozierende: Ashkan Nikeghbali

STA 111 Stochastic Modeling (5 ECTS)

We discuss relevant topics of aspects of stochastic modeling: including runs, ruins,
queues, Markov processes, Brownian motion, POT/EVT, compartmental models,
stochastic cellular automata.

Vorraussetzung: STA 110 Introduction to Probability (or equivalent)

Dozierende: Reinhard Furrer

20                                                                 MATH BULLETIN FS 2018
STA 390 Statistical Practice (4 ECTS)
This module aims to offer a first glimpse into the practice of a statistician. To this end
students will work under supervision on "real" statistical problems, e.g., consulting
cases, statistical software implementations, methodology developments etc.

Voraussetzungen: Completion of the 30 ECTS minor.Approval of the coordinator.

Dozierende: Reinhard Furrer

STA 408 Statistical Methods in Epidemiology (5 ECTS)

Analysis of case­control and cohort studies. The most relevant measures of effect
(odds and rate ratios) are introduced, and methods for adjusting for confounders
(Mantel­Haenszel, regression) are thoroughly discussed. Advanced topics such as
measurement error and propensity score adjustments are also covered. We will
outline statistical methods for case­crossover and case series studies and finally
describe methods to analyse registry data, including relative survival techniques.

Voraussetzungen: Basic knowlegde of the programming language R..

Dozierende: Leonhard Held, Beate Sick

STA 425 Survival Analysis (3 ECTS)

The analysis of survival times, or in more general terms, the analysis of time to event
variables is concerned with models for censored observations. Because we cannot
always wait until the event of interest actually happens, the methods discussed here
are required for an appropriate handling of incomplete observations where we only
know that the event of interest did not happen within a certain period. Most
prominently, survival analysis is used in randomised clinical trials in oncology, but
also in epidemiology, and also outside biostatistics in economics (duration analysis)
or sociology (event history analysis).
During the course, we will study the most important methods and models for

MATH BULLETIN FS 2018                                                                   21
censored data, including
­ general concepts of censoring,
­ simple summary statistics,
­ estimation of survival curves,
­ frequentist inference for two and more groups, and
­ regression models for censored observations.

Voraussetzungen: Basic knowlegde of the programming language R, Regression and
likelihood methods.

Dozierende: Torsten Hothorn

STA 421 Bayesian Data Analysis (3 ECTS)

Bayesian methodology for data analysis is well established and used in many
domains of science. The unique ability to incorporate prior knowledge makes it
especially attractive for empirical research. The growing number of practitioners
appreciate the Bayesian paradigm as an intuituve approach to answer various
relevant research questions.
Moreover, in recent years, Bayesian modeling has become more accessible through
general­purpose software systems for Bayesian computation. In particular, JAGS and
R­INLA represent the current state­of­the­art.
However, Bayesian methodology is often used without a deeper understanding of its
intricacies and therefore not tailored to optimal efficacy for a given setting. This
lecture provides a widely accessible introduction to Bayesian methodology by
contrasting the classical and Bayesian approaches. The underpinnings and
mechanisms of the Bayesian paradigm will be made tangible by analyses in R, JAGS
and R­INLA. The presented applications in this lecture are from a biomedical
research context but participants will be enabled to transfer their acquired skills in
Bayesian methodology to other areas of empirical research.

Voraussetzungen: A sound knowledge of classical statistics and programming in R.

Dozierende: Malgorzata Roos

22                                                               MATH BULLETIN FS 2018
MAT 820 Numerisches Praktikum (3 ECTS)

Das numerische Praktikum kann sich formal aus einem Seminar und einer
Seminararbeit oder auch nur aus einer Seminararbeit zusammensetzen.
Inhaltlich geht es darum, eine erlernte numerische Methode für ein konkretes
Problem anzuwenden und numerische Experimente durchzuführen, um deren
Verhalten (Konvergenz, Robustheit, Anwendbarkeit, Effizienz) zu analysieren und
mit der Theorie zu vergleichen.
Ein numerisches Praktikum kann den Grundstock bilden für eine anschliessende
Masterarbeit    und     steht   typischerweise     in   Verbindung      mit     aktuellen
Forschungsrichtungen der Forschungsgruppe Numerik am I­Math in enger
Zusammenarbeit mit den Mitgliedern der Arbeitsgruppe.

Dozierende: Stefan A. Sauter

MAT 557 Advanced topics in linear algebra (3 ECTS)

The idea of the seminar is to explore some topics which are „linear algebraic", but
which lie outside the standard material from basic courses in linear algebra and
algebra. The topics will be interrelated among themselves, and will also connect to
various areas of mathematics.
We will try to emphasize these connections as much as we can, while still having fun
with each topic for its own sake.
Here is a sample of some of the things we will learn about:
­ some basic notions of general (universal) algebra; e.g. posets and lattices
­ some basic methods of homological algebra; e.g. exact sequences, diagram chasing
­ some theory of finitely generated modules over a principle ideal domain, e.g. for
the classification of endomorphisms of a vector space over (nearly) any field
­ some representation theory of quivers and posets, e.g. as a tool to study systems of
linear spaces and maps.

Voraussetzungen: Linear Algebra Iⅈ Algebra.

Dozierende: Jonathan Michael Lorand

MATH BULLETIN FS 2018                                                                  23
MAT 680 Seminar Analysis. Topics from the theory of
Dynamical Systems (3 ECTS)
The field of 'Dynamical Systems’ has its origin in celestial mechanics, which is
concerned with the study of the movements of the planets, in particular the
prediction of periodic orbits, possible collisions, or the existence of unbounded
orbits (i.e., planets leaving the (solar) system). The subject of ‘Dynamical Systems’ is
the (time) evolution of systems, described in terms of a law of evolution on a state
space. Ordinary differential equations can be viewed as dynamical systems where
the law of evolution is given by the flow (solution map). In this course, we will be
mostly concerned with discrete dynamical systems. Their dynamics are described by
the iteration of a map, acting on the state space, and the main object of study is their
orbits, defined as sequences of states, obtained by applying to a starting point
iterates of the given map. Fundamental questions are, among others, the following
ones:
(1) What is the long time asymptotics of a given orbit? Does it approach an
equilibrium (attractor)? Does it return to starting point (periodic orbit)? Or does it
return to a state nearby (recurrence)? Is the orbit dense on the state space
(transitive)?
(2) Does the system admit conserved quantities, such as the ‘energy’ or ‘momentum’,
or does there exist an invariant measure?
(3) How do the orbits depend on the starting point? Do they stay close to a given
orbit if their starting points are slightly changed (Lyapunov / asymptotic / orbital
stability)? Or is there a sensitive dependence on initial state (chaotic systems)?
(4) Are there no qualitative changes of the orbits if the law of evolution is (slightly)
perturbed (structural stability)? In particular, do periodic orbits persist under small
perturbations?
The aim of the course is to get to know basic examples and concepts of dynamical
systems, pertinent to the questions raised above. It is based on selected chapters of
the book ‘Lectures on Dynamical Systems. An Introduction’, EMS 2010, by E.
Zehnder. If you are interested in attending the seminar, please let us know by email
(thomas.kappeler@math.uzh.ch) as early as possible so that
we can get organized ahead of the start of the spring semester.

Dozierende: Thomas Kappeler

24                                                                  MATH BULLETIN FS 2018
MAT 592 Seminar on Galois theory (3 ECTS)

Historically Galois theory arose as an attempt to systematically understand why a
general polynomial of degree five or greater is not solvable by radicals. In more
modern terms, it outlines an elegant connection between the study of field
extensions and the study of groups. The aim of the seminar course is to understand
this connection.
The seminar course will start with a review of the basics of field theory and present
main results of Galois theory with proofs. We will discuss applications of Galois
theory to historically significant problems (solvability by radicals, Euclidean
construction of regular polynomials, etc.) as well as present some connections with
the more modern topics.

Dozierende: Andrew Kresch

MAT 960 Mathematical foundations of machine learning (3
ECTS)

Machine learning is a collection of algorithms that allow computers to carry out
complex tasks, such as determining whether an e­mail is spam or not, by learning
from data. It is an important field that spans engineering, computer science and
statistics. The topic of this seminar is the mathematical theory of machine learning.
We will study some basic machine learning algorithms, and introduce a
mathematical framework that allows us to state and prove rigorous results about
their performance. Students will present selected chapters from books on the
subject.

Voraussetzungen: Stochastics I, Linear Algebra I, Programming

Dozierende: David Belius

MATH BULLETIN FS 2018                                                              25
STA 380 Selected Topics in Statistics (3 ECTS)
This is a seminar where students learn to present, discuss, and defend research
results from a recent article in the statistical literature. We propose a set of papers
from a certain topic, but may propose another recent paper motivated by personal
interest.

Voraussetzungen: STA402 Likelihood Inference or MAT924 Mathematical Statistics.

Dozierende: Reinhard Furrer

MAT 589 Seminar: Representation theory (3 ECTS)

Representation theory is simple to define: it is the study of the ways in which a given
group may act on vector spaces. It is almost certainly unique, however, among such
clearly delineated subjects, in the breadth of its interest to mathematicians. This is not
surprising: group actions are ubiquitous in 20th century mathematics, since it
captures the concept of "symmetry", and where the object on which a group acts is
not a vector space we have learned to replace it by one that is (e.g., a cohomology
group, tangent space, etc.). As a consequence, many mathematicians other than
specialists in the field—or even those who think they might want to be—come in
contact with the subject in various ways. It is for such people that this course is
designed. To put it another way, we intend this course for beginners and
nonspecialists.
The present courses program focuses exactly on the simplest cases: representations of
finite groups and, if time permits, the basic examples of actions of Lie groups on
finite­dimensional real and complex vector spaces. Depending on the audience, the
classification of modules over a PID, may also be covered.

Vorraussetzungen: Linear Algebra I & II, Algebra

Dozierende: Alberto Navarro Garmendia

26                                                                 MATH BULLETIN FS 2018
Forschungsseminare.
Auf der Webseite unseres Instituts math.uzh.ch findet ihr unter Veranstaltungen
Kolloquia/Seminare eine Liste von Forschungsseminaren. Ein Forschungsseminar
besteht aus nicht zusammenhängenden Vorträgen in denen Doktoranden und
Professoren unter anderem ihre aktuellen Forschungsprojekte vorstellen. Dies
könnte vor allem für Studenten interessant sein, die sich überlegen, in welchem
Bereich oder bei welchem Professor sie ihre Masterarbeit schreiben wollen. Wenn ihr
in der Liste auf eines der Seminare klickt, könnt ihr für das jeweilige Seminar einen
Newsletter abonnieren, der euch vor jedem Vortrag kurz über den Titel des Vortrags
informiert. Achtung: Es findet nicht jede Woche ein Vortrag statt. Unten seht ihr die
Liste von Forschungsseminaren für das Herbstsemester:

Talks in mathematical physics: Do 15.00­17.00 ETH HG G 43
Arbeitsgemeinschaft in Codierungstheorie und Kryptographie: Mi 15.00­17.00 Y27
H28
Discrete mathematics: Di 11.15­12.00 Y27 H46
Analysis Seminar: Di 15.15­17.00 ETH
PDE and Mathematical Physics: Do 17.00­19.30 Y27 H35/36
Oberseminar: Algebraische Geometerie: Mo 13.00­14.45 Y27 H25
Geometrie­Seminar: Mi 15.45­18.00 ETH
Zurich Colloquium in Applied and Computational Mathematics: Mi 16.15­17.15 Y27
H25
Stochastische Prozesse: Mi 17.15­19.00 Y27 H25
Research Seminar on Statistics: Fr 15.15­16.15 ETH
Research Seminar in Applied Statistics: Do 16.15­18.00 Y27 H46
Epidemiology and Biostatistics Methods Seminar: Mi 14.00­16.00 HRS F05

27                                                                MATH BULLETIN FS 2018
Vorlesungsverzeichnis ETH.
401­3913­01L      Mathematical Foundations for Finance ­ 4 KP ­ E. W. Farkas, M. Schweizer
401­2333­00L      Methoden der mathematischen Physik I ­ 6 KP ­ H. Knörrer
402­2203­01L      Allgemeine Mechanik ­ 7 KP ­ N. Beisert
252­0851­00L      Algorithmen und Komplexität Information ­ 4 KP ­ A. Steger
401­2003­00L      Algebra I ­ 7 KP ­ E. Kowalski
401­3531­00L      Differential Geometry I ­ 10 KP ­ Salamon
401­3461­00L      Functional Analysis I ­ 10 KP ­ A. Carlotto
401­3001­61L      Algebraic Topology I ­ 8 KP ­ W. Merry
401­3132­00L      Commutative Algebra Information ­ 10 KP ­ P. D. Nelson
401­3581­67L      Symplectic Geometry ­ 8 KP ­ A. Cannas da Silva
401­3601­00L      Probability Theory ­ 10 KP ­ A.­S. Sznitman
401­3621­00L      Fundamentals of Mathematical Statistics ­ 10 KP ­ S. van de Geer
401­3901­00L      Mathematical Optimization Information ­ 11 KP ­ R. Weismantel
252­0209­00L      Algorithms, Probability, and Computing Information ­ 8 KP ­ E. Welzl,
                  M. Ghaffari, A. Steger, P. Widmayer
402­0205­00L      Quantum Mechanics I Information ­ 10 KP ­ C. Anastasiou
401­3059­00L      Kombinatorik II ­ 4 KP ­ N. Hungerbühler
401­3034­00L      Axiomatische Mengenlehre ­ 8 KP ­ L. Halbeisen
401­3118­67L      Classical Modular Forms ­ 8 KP ­ I. N. Petrow
401­3203­67L      Small Cancellation Theory ­ 4 KP ­ D. Gruber
401­3177­67L      Introduction to Vertex Operator Algebras ­ 4 KP ­ C. A. Keller
401­0625­01L      Applied Analysis of Variance and Experimental Design Information ­ 5 KP
                  L. Meier
401­0649­00L      Applied Statistical Regression Information ­ 5 KP ­ M. Dettling
401­3628­14L      Bayesian Statistics ­ 4 KP ­ F. Sigrist
401­4637­67L      On Hypothesis Testing ­ 4 KP ­ F. Balabdaoui
401­4935­67L      Mean Field Games ­ 4 KP ­ M. Burzoni
401­3833­65L      Chaotically Singular Spacetimes ­ 6 KP ­ H. Knörrer, M. Reiterer,
                  E. Trubowitz
402­0830­00L      General Relativity Information ­ 10 KP ­ G. M. Graf
401­3055­64L      Algebraic Methods in Combinatorics ­ 6 KP ­ B. Sudakov
401­3901­00L      Mathematical Optimization Information ­ 11 KP ­ R. Weismantel

MATH BULLETIN FS 2018                                                                     28
Impressum.
Herausgeber
Fachverein Mathematik der Universität Zürich
Universität Irchel, Raum Y27­K­37
Winterthurerstrasse 190
8057 Zürich
bulletin@math.uzh.ch
http://fvm.math.uzh.ch/

Redaktion und Layout
Sarina Sutter
Stefan Kurz

Druck
Druckzentrum ETH Zentrum
Rämistrasse 101
8092 Zürich

Inserate
¼ Seite, ½ Seite, 1 Seite   Preis auf Anfrage

Bilder
Cover: http://www.natuerlich­online.ch/magazin/artikel/der­fibonacci­code/

Dank
Wir danken folgenden Personen herzlich für ihre Beiträge im Bulletin FS 2018:
Matthew Scroggs, Alberto Navarro Garmendia, Gian Deflorin.

29                                                           MATH BULLETIN FS 2018
Sie können auch lesen