Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier

Die Seite wird erstellt Milo Forster
 
WEITER LESEN
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
positionspapier

Sensorik
für die Digitalisierung
chemischer Produktionsanlagen
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
IMPRESSUM

Autoren:
Uwe Hampel (Helmholtz-Zentrum Dresden-Rossendorf )
Andreas Schütze (Universität des Saarlandes)
Matthias Rädle (Hochschule Mannheim)
Thomas Rück (Ostbayerische Technische Hochschule Regensburg)
Martin Krawczyk-Becker (KROHNE Innovation GmbH)
Thomas Musch (Ruhr-Universität Bochum)
Michael Maiwald (Bundesanstalt für Materialforschung und -prüfung)
Hans Joachim Fröhlich (Endress+Hauser AG)
Sebastian Zeck (Wanted Technologies)

Ansprechpartner:
Prof. Dr.-Ing. habil. Dr. h. c. Uwe Hampel

Herausgeber
ProcessNet-Fachgemeinschaften „Fluiddynamik und Trenntechnik“ und „Prozess-, Apparate- und Anlagentechnik“

Verantwortlich im Sinne des Presserechts
DECHEMA e.V.
Dr. Andreas Förster
Theodor-Heuss-Allee 25
60486 Frankfurt am Main

Erschienen im Januar 2020

Bildnachweise
Titel: KROHNE Messtechnik GmbH; S. 2: BASF SE; S. 3: hramovnick - stock.adobe.com; S. 7: Endress+Hauser;
S. 9: Volker Schlichting - fotolia.de; S. 11: WrightStudio - stock.adobe.com; S. 14: railwayfx - stock.adobe.com;
S. 15: Michael Zhang - fotolia.de
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
Inhaltsverzeichnis

1   Digitalisierung chemischer Produktionsprozesse – Chancen und Herausforderungen für Messtechnik und Sensorik   2

2   Sensorik für Zustandsüberwachung und vorausschauende Wartung                                                  3

3   Sensorik zur Erfassung stoffbezogener Größen                                                                  5

4   Sensorintegration in Anlagen                                                                                  7

5   Datenübertragung und Sensorkommunikation                                                                      9

6   Sensorintelligenz                                                                                             11

7   Sensordatenverarbeitung                                                                                       14

8   Empfehlungen für die Forschung und Entwicklung                                                                15

                                                                                                                        1
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
sensorik für die digitalisierung chemischer produktionsanlagen

    1 Digitalisierung chemischer Produktionsprozesse –
      Chancen und Herausforderungen für Messtechnik
      und Sensorik
                                                                                           Produktqualität, etwa durch Ver-
                                                                                           unreinigungen und Spurenstoffe,
                                                                                           schwankende Eduktzusammen-
                                                                                           setzungen oder degradierte Kata-
                                                                                           lysatoren frühzeitig zu erkennen.
                                                                                           Dafür geeignete spektroskopi-
                                                                                           sche Messtechniken sind heute
                                                                                           fast immer noch ausschließlich
                                                                                           für den Laborbereich verfügbar
                                                                                           und müssen auf die Prozessebe-
                                                                                           ne übertragen werden.

                                                                                             Für diese Herausforderungen ist
                                                                                             die in heutigen Prozessanlagen
                                                                                             vorhandene betriebliche Instru-
                                                                                             mentierung sowohl bezüglich
                                                                                             der von ihr erfassten Informa-
                                                                                             tionen als auch bezüglich der
                                                                                             von ihr bereitgestellten Schnitt-
                                                                                             stellen und Datenformate nicht
    Die chemische Industrie steht derzeit, wie viele ande-        ausreichend. Eine Weiterentwicklung der Prozessmess-
    re Industriebereiche, vor den Herausforderungen einer         technik und Prozessanalysentechnik in Richtung der Er-
    Digitalisierung der Produktion. Sie ist der Schlüssel für     fassung sekundärer Prozessparameter, einer intelligenten
    die Flexibilisierung von Prozessen und Anlagen, für die       multimodalen Sensordatenverarbeitung, standardisierter
    Verkürzung von Produkteinführungszeiten sowie für den         digitaler Schnittstellen sowie Sensorintelligenz ist unab-
    Zuschnitt der Produktion auf wechselnde Nachfrage und         dingbar. Schließlich ist beim verstärkten Einsatz neuer Sen-
    kürzere Produktlebenszyklen. In einer vernetzten Welt         sorik der Sensorrobustheit, der Eigensicherheit im Prozess
    werden Informationen über Rohstoffe, Energieträger und        sowie der einfachen, auch nachträglichen oder temporären,
    Marktbedingungen instantan verfügbar. Sie können damit        Installierbarkeit von Sensoren in großen Anlagen und rau-
    direkt in Prozessabläufe einfließen und bei der Erstellung    en Prozessumgebungen Rechnung zu tragen.
    von Marktprognosen helfen. Allerdings ergeben sich für
    die Digitalisierung von Produktionsprozessen in der che-      Da die Entwicklung neuer und verbesserter Messtechnik
    mischen Industrie besondere Herausforderungen durch           und Sensorik grundlegend aus verschiedenen Richtungen
    ein oftmals sehr produktspezifisches Anlagendesign so-        gedacht werden muss, haben sich Akteure aus verschie-
    wie die komplexe stoffliche und energetische Verkettung       denen Branchen zusammengetan und dieses Positionspa-
    von Grundoperationen.                                         pier erstellt. Es basiert auf einer grundlegenden Analyse
                                                                  des Ist-Stands sowie des Bedarfs der Industrie, die unter
    Die Messtechnik und Sensorik spielt neben der intelligen-     anderem auf einem eigens dafür durchgeführten Work-
    ten Datenverarbeitung eine Schlüsselrolle für die Digitali-   shop mit Sensorentwicklern, Anlagenherstellern sowie
    sierung. Flexiblere Anlagen benötigen Sensorik zur Über-      Anlagenbetreibern am 18. Juni 2019 bei der DECHEMA in
    wachung des Anlagenzustandes, zur Früherkennung nicht         Frankfurt a. M. diskutiert wurden. Diese Aktivitäten wur-
    bestimmungsgemäßer Betriebszustände sowie für eine be-        den maßgeblich von der Initiative Wanted Technologies
    darfsgerechte Wartung. Neben der Zustandsüberwachung          der ProcessNet sowie dem AMA Verband für Sensorik und
    ist ebenfalls eine verbesserte Sensorik für die Erfassung     Messtechnik e.V. initiiert.
    von stoffbezogenen Daten essenziell, um Einbußen der

2
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
2 Sensorik für Zustandsüberwachung und
  vorausschauende Wartung

Die Zustandsüberwachung hat zum Ziel, frühzeitig Ver-      lituden von Vibrationen, sowie Temperaturwechselbela-
änderungen und Probleme im Prozessablauf oder in der       stungen. Diese müssen mit ausreichend hoher räumlicher
Funktion von Komponenten zu erkennen. Dadurch sollen       Auflösung erfasst werden. In Bezug auf die funktionale
größere Schäden oder Produktivitätseinbußen vermieden      Prozesssicherheit kann durch feste oder mobile Senso-
werden. Die vorausschauende Wartung dient der Optimie-     rik eine zweite Überwachungsebene aufgespannt werden,
rung der Produktion bezüglich Wartungseingriffen und       in der Tätigkeiten der Anlagenläufer durch die Sensorik
Prozessstillständen. Das frühzeitige Bestimmen optimaler   übernommen werden. Bei Komponenten, wie Pumpen,
Eingriffszeitpunkte ist dabei ebenso wichtig wie das An-   Ventilen und Durchflussmessern, stehen vor allem der
passen der Betriebsfahrweise an den aktuellen Anlagen-     Verschleiß sowie mechanische und thermomechanische
und Komponentenzustand. Vor allem in frühen Phasen         Belastungen im Fokus des Interesses. Die Zukunftstrends
sind Veränderungen des Material- oder Komponentenver-      liegen hier in der multisensoriellen Erfassung verschiede-
haltens kaum mit betrieblicher Prozessinstrumentierung     ner und auch indirekter Parameter, in der Erfassung von
erkennbar und erfordern zusätzliche Spezialsensorik.       Parametern an mehreren Positionen innerhalb der Kom-
                                                           ponente, in intelligenter Softsensorik sowie berührungs-
Für große Komponenten, wie Trennkolonnen, Reakto-          freien Messverfahren.
ren, Rohrleitungssysteme, sowie ganze Anlagen stehen
die Erfassung von Prozess- und Anlagenparametern an        Für die Zustandsüberwachung gibt es bereits eine Reihe
möglichst vielen Positionen und mit möglichst geringem     etablierter einfacher berührender Sensortechniken, wie
technischen Aufwand bezüglich der Verkabelung sowie        Dehnmesstreifen oder Temperatursensoren. Während für
der Art und Anzahl von Einbauöffnungen bei gleichzeitig    letztere kaum Entwicklungsbedarf besteht, sind für ers-
hoher Robustheit und großer Datenverdichtung im Vor-       tere Entwicklungen hin zu höheren Prozesstemperaturen
dergrund. Zu erfassende Größen sind Art und Dicke von      oberhalb 200 °C anzustreben. Zu den fortgeschrittenen
Fouling-Belägen, Verschleißfortschritt, Geometrieverän-    berührenden Sensoren gehören faseroptische Sensoren
derungen, Mikrorisse sowie lokal wirkende Lasten und       auf Basis von Faser-Bragg-Gitter-Technologie oder Raman-
Spannungen, Beschleunigungen, Frequenzen und Amp-          Streuung. Für diese wurde in den letzten Jahren bereits

                                                                                                                        3
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
sensorik für die digitalisierung chemischer produktionsanlagen

    eine gute Prozesstauglichkeit erreicht. Zukünftige Entwick-   duktionsanlagen qualifiziert werden. Für akustische und
    lungen sollten vor allem auf eine Ausdehnung der sensori-     bildgebende Ansätze sind insbesondere Konzepte für die
    schen Funktionalität auf andere Größen als Temperatur und     gleichzeitige Überwachung mehrerer Komponenten von
    Dehnung sowie eine noch höhere Robustheit zielen.             Interesse. Fernerhin sollten auch hier innovative Ansätze,
                                                                  etwa durch Nutzung natürlicher Strahlung, magnetischer
    Im Bereich eingreifender aber nicht medienberührender         Felder, Kernspinresonanz sowie Verfahren der Prozes-
    Sensorik liegt ein Hauptaugenmerk auf der Entwicklung         stomographie oder Impedanzspektroskopie nutzbar ge-
    von Schall-, Radar- und Lidar-Systemen für raue Prozess­      macht werden.
    umgebungen. Solche Techniken werden heute beispiels-
    weise bereits für die Füllstandsmessung eingesetzt. Eine      Für die Zustandsüberwachung und vorausschauende War-
    Ausdehnung des Anwendungsbereiches auf die Diagnos-           tung von Komponenten stehen Robustheit und Kostenef-
    tik von Strömungszuständen in Kolonnen, die Detektion         fizienz technischer Lösungen im Vordergrund. Deshalb
    und quantitative Bewertung von Schaumbildung und              ist bei der Entwicklung und Qualifizierung von Sensorlö-
    Zweiphasenzuständen, die Messung von Trübungen im             sungen insbesondere auf die Robustheit des Wandlers
    Gas- oder Flüssigkeitsraum von Prozessanlagen oder die        und der prozessnahen Aufbau- und Verbindungstechnik
    Erkennung anlageninterner Geometrieveränderungen              zu achten. Besonders wichtig sind dabei Temperaturfes-
    sind hier von besonderem Interesse. Entwicklungsbedarf        tigkeit, Temperaturwechselbeständigkeit, Chemikalien-
    besteht vor allem im Bereich der intelligenten Signal- und    beständigkeit, Abrasionsfestigkeit, Korrosionsbestän-
    Datenverarbeitung sowie der Robustheit der Sensorhard-        digkeit, Unempfindlichkeit gegen mechanischen und
    ware. Im Bereich der Anlagensicherheit ist darüber hinaus     thermischen Schock sowie Unempfindlichkeit gegen
    die Weiterentwicklung intelligenter, hochsensitiver und       Fouling. Kann eine Unempfindlichkeit nicht gewährleistet
    -selektiver Gassensorik von Bedeutung.                        werden, sind Konzepte zur Erkennung von Beeinträch-
                                                                  tigungen der sensorischen Funktionalität zu entwickeln
    Besonderes Augenmerk sollte auf die Entwicklung, Qualifi-     und zu implementieren. Da bei Komponenten der Kosten-
    zierung und Anwendung berührungsfreier nichteingreifen-       druck auf die Sensorik größer ist als bei großen Anlagen,
    der Mess- und Bildgebungsverfahren gelegt werden. Der         sind hier insbesondere die Substitution kostenintensiver
    Preis von CMOS- und Infrarot-Kameras erlaubt mittlerweile     High-end-Sensorik durch kombinierte einfache und preis-
    einen massiven Einsatz derselben in Prozessanlagen. Da-       werte Sensoren sowie die adressierbare Erfassung ver-
    her stehen weniger der Bildgebungssensor selbst als die       schiedener Systemparameter von Interesse.
    Schaffung geeigneter und sicherer optischer Zugänge zum
    Prozess bzw. zur Anlage sowie die intelligente Bildanalyse    Eine wesentliche Entwicklungsrichtung ist die Fusion von
    im Fokus. Ziel der Entwicklung von Systemen im Bereich        Daten multipler Sensoren und die Etablierung von Soft-
    TRL 3 bis TRL 6 muss hier der Nachweis der erfolgreichen      sensorik. So können bei der Überwachung von Pumpen,
    Erkennung und Quantifizierung von Zustandsänderungen          Ventilen oder Wärmetauschern Daten spezieller Senso-
    unter schwierigen Prozessbedingungen sein. Solche sind        ren, etwa für Vibration, mit Daten betrieblicher Instrumen-
    beispielsweise geringfügige Geometrieveränderungen,           te, etwa für Temperatur, Druck und Durchfluss, kombiniert
    Schwingungen, Belagsbildung, Materialabtrag durch Kor-        werden. Für Pumpen, Ventile und Rohre sind sensorische
    rosion oder Abrasion, Temperaturfelder oder verschiedene      Konzepte von hohem Interesse, bei denen der Zustand
    Strömungszustände. Daneben sollten für große Anlagen          der Komponenten (zum Beispiel Lagerspiel, Ventilsitz,
    ebenfalls neue Ansätze berührungsfreier Mess- und Bildge-     Verblockung, Wandschwächung) mittels Softsensorik aus
    bungsverfahren, etwa Messverfahren auf Basis natürlicher      mit betrieblicher Instrumentierung erfassten fluiddyna-
    Strahlung oder Prozesstomographie, auf ihre Anwendbar-        mischen und thermischen Prozessgrößen ableitbar ist.
    keit hin untersucht und hin zur Prozesstauglichkeit entwi-    Bei Wärmetauschern kann Softsensorik helfen zu erken-
    ckelt werden.                                                 nen, wo genau Fouling einsetzt und wie viele bzw. welche
                                                                  Rohre oder Platten betroffen sind. Für die Qualifizierung
    Für die Komponentenüberwachung werden aus Gründen             berührungsfreier akustischer Sensoren ist oft die Schall­
    der Prozesssicherheit ebenso berührungsfreie Messver-         ausbreitung in inhomogenen und veränderlichen Pro-
    fahren bevorzugt. Die akustische Überwachung stellt eine      zessmedien und komplex strukturierten Prozessräumen
    im Grundsatz bereits gut entwickelte Methode dar. Eben-       problematisch. Hier sind insbesondere fortgeschrittene
    so wie für Gesamtanlagen sollten hier verstärkt Verfahren     Methoden der Signalverarbeitung, wie etwa Maschinelles
    auf Basis von optischer und Infrarot-Bildgebung für Pro-      Lernen, gefordert.

4
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
3 Sensorik zur Erfassung stoffbezogener Größen

Als stoffbezogene Messgrößen werden im Kontext chemi-        gleichzeitiger Erhöhung der Prozess- und Anlagensicher-
scher Produktionsanlagen im weitesten Sinne solche Grö-      heit (z. B. Explosionsschutz) zu realisieren.
ßen bezeichnet, welche die chemische Zusammensetzung
und stoffliche Eigenschaften von Gasen, Flüssigkeiten und    Werden Sensoren und Messverfahren für stoffbezogene
Feststoffen aber auch Grenzflächen beschreiben. Hierzu       Größen von der Labor- auf die Prozessumgebung über-
zählen beispielsweise Stoffkonzentration, Phasenanteil,      tragen, so sind sie außerdem oft anfällig für prozesstypi-
Partialdruck, pH-Wert, Viskosität, Dichte, Oberflächen-      sche Störungen, die im Labormaßstab nicht vorkommen
spannung, disperse Grenzflächendichte, Aktivität, Trü-       oder durch manuelle Präparationsverfahren vermieden
bung sowie Größenverteilungen disperser Stoffe. Für die      werden. Solche Störungen sind zum Beispiel Gasblasen,
Messung dieser Größen existieren heute vielfältige Arten     Schlieren und Feststoffpartikel in optischen Messvolumi-
von Labormessgeräten, die auf komplexen physikalischen       na, Fouling an Wand- oder Wärmeübertragungsflächen,
Messprinzipien, wie z. B. der UV/VIS/NIR-Spektroskopie,      stoffliche Inhomogenitäten durch ungenügende Vermi-
der Raman-Spektroskopie, der Fluoreszenzspektroskopie,       schung, Dispergierung oder Emulgierung oder starker
der Ionenmobilitätsspektrometrie, der Kernspinresonanz-      Temperatureinfluss. Dafür sind integrale Korrektur- und
spektroskopie oder der photoakustischen Spektroskopie,       Schutzmechanismen zu entwickeln und zu implemen-
basieren. Die Inline- bzw. Online-Erfassung stoffbezoge-     tieren. Störungen, die sich auch auf den Prozessablauf
ner Größen wird häufig mit dem Begriff der Prozessanaly-     auswirken, sollten detektiert, quantifiziert und gemeldet
setechnik (PAT) verbunden.                                   werden. So können in manchen Anwendungen Prozess-
                                                             spektrometer durch einfachere und robustere Messge-
Für den Laborbetrieb entwickelte Messgeräte sind im All-     räte ersetzt werden, bei denen durch Beschränkung auf
gemeinen universell für stark wechselnde Anforderung         produktspezifische Wellenlängen problematische Quer-
des Laborbetriebs ausgelegt und deshalb zu groß und zu       empfindlichkeiten vermieden werden. Hierzu ist zumeist
teuer für die Integration in Prozessanlagen. Zur besse-      ein vertieftes Prozessverständnis notwendig. Als Beispiel
ren Prozessintegration existierender Messverfahren für       kann beim Raman-Nachweis von Restwasser in organi-
stoffbezogene Größen sind Messgeräte kompakt, robust         schen Lösungsmitteln der Einfluss von Fluorophoren oder
und funktional zu gestalten, wobei dies nicht zu Lasten      Belägen über die Messung der Lichtintensität in einem
der oft geforderten hohen Präzision und Reproduzierbar-      nicht-Raman-aktiven Wellenlängenbereich erkannt und
keit gehen darf. Ein Beispiel ist die Miniaturisierung von   unterdrückt werden.
komplexen Wandlersystemen, wie z. B. standardisierte
Spektrometer-Frontends. Neben einer grundlegenden            Eine wesentliche Hürde bei der Praxiseinführung neuer
Funktionsoptimierung ermöglicht ein funktionales Design      Sensorik entsteht aus dem Tatbestand, dass im Labor, im
auch den einfachen Austausch bestimmter Baugruppen,          Technikum und in der großtechnischen Produktionsanla-
beispielsweise mit Blick auf eine einfache Sensorwartung     ge bisher Messtechnik und Sensorik mit unterschiedlicher
oder Sensorreinigung, so dass dies durch den Anwender        Funktionalität verwendet werden muss. Durchgängige
selbst und nicht ausschließlich durch geschultes Fach-       Lösungen existieren kaum. Dies erhöht den Anpassungs-
personal möglich ist. Im Rahmen der Miniaturisierung         aufwand bei der Integration in Prozessanlagen zusätzlich.
und Funktionalisierung sollte das Potenzial alternativer     Sowohl die Akzeptanz als auch die Übertragbarkeit von
und automatisierter Fertigungsverfahren, wie Siebdruck,      Ergebnissen würde von einer durchgängigen Sensoran-
3D-Druck, Dünnschichttechnik oder MEMS-Technologi-           wendung während der Prozessentwicklung und Pilotie-
en, genutzt werden. In Kombination mit der Verwendung        rung vom Labor über das Technikum bis in die Produktion
standardisierter Komponenten können Messsysteme auf          und Nutzung vergleichbarer Sensorik profitieren.
diese Weise preiswerter realisiert und ein massiverer
Einsatz, etwa in großen Apparaten, wie Trennkolonnen,        Wegen der Vielfalt der zu erfassenden Größen und der
ermöglicht werden. Auch die faseroptische Ankopplung         zur Messung geeigneten physikalischen und chemischen
von optischen Sensoren stellt eine sehr gute Möglichkeit     Wechselwirkungsmechanismen ist das Gebiet der Sensorik
dar, die Prozessanbindung robust und kostengünstig bei       für stoffbezogene Größen sehr innovativ und von vielfältigen

                                                                                                                            5
Sensorik für die Digitalisierung chemischer Produktionsanlagen - positionspapier
sensorik für die digitalisierung chemischer produktionsanlagen

    Entwicklungen in anderen Anwendungs- und Technolo-             Ein enorm hohes Potenzial bei der Auswertung von Daten
    giefeldern getrieben. Beispielhaft seien hier jüngere Ent-     von Sensoren für stoffbezogene Größen liegt in der Ent-
    wicklungen in der Lasertechnik (Absorptionsspektroskopie       wicklung und Nutzung von Verfahren zur Mustererkennung
    mittels durchstimmbarer Laserdioden, Raman-Techniken,          auf Basis maschinellen Lernens. Dies trifft besonders auf
    photoakustische Spektroskopie, Quantenkaskadenlaser,           multimodale Sensorsysteme sowie Messtechniken zu, bei
    Oberflächenplasmonen-Resonanzspektroskopie),            der    denen komplexe Spektren bzw. Signalformen ausgewertet
    Lichtwellenleitertechnik (faseroptische Sensoren) sowie        werden müssen (z. B. FTIR-Spektroskopie oder Spektros-
    der Mikroelektronik und Mikrosystemtechnik (ChemFET,           kopiemethoden mit Frequenzmodulation). In Verbindung
    MEMS, kapazitive mikromechanische Ultraschallwandler)          mit speziellen, auch multispektralen Kamerasystemen
    genannt. Ergebnisse des wissenschaftlich-technischen           und intelligenten Auswertealgorithmen könnten derarti-
    Fortschritts auf diesen Gebieten sind in möglichst kurzer      ge Mustererkennungsverfahren auch genutzt werden, um
    Zeit durch Demonstration der Funktionsprinzipien im Labor      prozesstypische Störungen zu erkennen.
    und anschließende Übertragung in die Praxis der chemi-
    schen Produktion zu transferieren. Oft sind solche innovati-
    ven Messtechniken auch bereits für andere Einsatzgebiete,
    wie Medizintechnik, Materialprüfung oder Fertigungstech-
    nik, entwickelt, müssen aber für verfahrenstechnische An-
    wendungen spezifisch adaptiert werden.

    Eine besondere Herausforderung ist die Erfassung stoff-
    bezogener Größen bei Existenz von Grenzflächen im
    Messvolumen. Diese können sich einerseits durch phy-
    sikalische Effekte, wie Lichtbrechung, Lichtreflexion,
    Licht- und Schallstreuung, störend auf den Messprozess
    auswirken. Andererseits ist die Grenzfläche oft selbst von
    Interesse, etwa bei der Bestimmung von Oberflächen-
    spannungen, Grenzflächendichten oder Stoffübergangs-
    größen. Besonders Grenzflächen zwischen Flüssigkeiten
    sowie zwischen Flüssigkeit und Gas (Flüssigkeitsfilme,
    Dampf- und Gasblasen) sind hier wegen ihrer Deformier-
    barkeit und Dynamik problematisch. Die Entwicklung pra-
    xistauglicher Messverfahren, welche gegen die Existenz
    von Grenzflächen unempfindlich sind oder von Messver-
    fahren, welche diese erkennen, quantifizieren und in die
    Berechnung stoffbezogener Größen einbeziehen, sind von
    großem Wert. Dafür sind sowohl intelligente physikalisch-
    technische Lösungen (zum Beispiel Messtechniken auf
    Basis von Kernspinresonanz oder Röntgenstrahlung) als
    auch intelligente Datenauswertetechniken für optische
    und andere Messverfahren gefragt.

6
4 Sensorintegration in Anlagen

Neben den Anschaffungskosten für Sensoren fallen nicht       dar, bei denen eine bereits in die Kernautomatisierung
unerhebliche Kosten bei deren Integration in die Anlage      integrierte Sensorplattform mit geringem Aufwand um zu-
an. Dazu kommen weitere Kosten für Wartung und In-           sätzliche Sensormodule, auch temporär, erweitert werden
standhaltung während der Betriebszeit. Als Hemmnisse         kann. Die zentrale Sensorplattform aggregiert die Daten
für eine umfassendere Instrumentierung von Anlagen           lokal und stellt verdichtete Informationen nach Bedarf
wurden fehlende Standardisierung für Prozesszugänge          zur Verfügung. Sie kann diese aber auch unter Berück-
vor allem für komplexere Sensoren, hoher Verkabelungs-       sichtigung von Applikationswissen auswerten. Neben der
aufwand für Datenkommunikation und Energieversorgung         Nutzung von Messwerten wäre ein erweiterter Zugang zu
sowie fehlende Standards für nicht drahtgebundene Kom-       Rohdaten für autorisierte Benutzer („Poweruser“) sehr
munikation erkannt.                                          nützlich, wie etwa der Zugriff auf Rohspektren an einem
                                                             Prozess Spektrometer.
Wo immer möglich, sollte die mechanische Integration
von Sensoren vereinfacht und standardisiert werden.          Die Verkabelung von Sensoren wirkt sich erheblich auf In-
In großen Anlagen könnten dies zum Beispiel standar-         stallations- und Wartungsaufwand und die damit verbun-
disierte Zugänge für Sensoren und Sensorlanzen an der        denen Kosten aus und verhindert oft den flexiblen Einsatz
Anlage, standardisierte Kabelführungen in Komponenten        von Sensorik. Zur Reduktion des Verkabelungsaufwandes
oder standardisierte optische, akustische oder elektroma-    sind kabellose Kommunikationstechnologien in die Pro-
gnetische Prozessfenster sein. Prioritär sollten, wo immer   zessautomatisierung einzuführen. Dabei kann auf aktu-
möglich, berührungsfreie Messverfahren so qualifiziert       elle Entwicklungen im Bereich 5G, Narrowband, IoT und
werden, dass berührende Sensoren ersetzt werden kön-         Bluetooth, aber auch Technologien wie WirelessHART,
nen. Ein gutes Beispiel dafür sind Clamp-On-Ultraschall-     LoRa und WiFi aufgesetzt werden. Zu einem flächende-
Sensoren.                                                    ckenden Einsatz kabelloser Kommunikation in Chemiean-
                                                             lagen ist es bislang jedoch noch nicht gekommen. Neben
Einen vielversprechenden Ansatz zur Reduktion des In­        der begrenzten Langzeiterfahrung, besonders hinsichtlich
stallationsaufwandes stellen modulare Sensorkonzepte         Sicherheit und Robustheit, liegt dies auch an der man-

                                                                                                                         7
sensorik für die digitalisierung chemischer produktionsanlagen

    gelnden Verfügbarkeit entsprechend ausgerüsteter und        Ein für die Industrie sehr wichtiges Thema ist der zeit-
    zertifizierter prozesstauglicher Sensoren und Infrastruk-   weise Betrieb von Zusatzinstrumentierung bei Inbetrieb-
    tur. Einer der kritischen Punkte ist eine hinreichend ge-   nahmen, Anfahr- und Abfahrvorgängen sowie zu Zwecken
    naue Synchronisation kabelloser Sensoren, insbesondere      des Trouble-Shootings. Von Interesse sind beispielsweise
    bei einer gemeinsamen Auswertung von zeitlich hoch auf-     sich einstellende Strömungszustände in Kolonnen und
    gelösten Daten. Dabei sind die Anforderungen an Latenz      Reaktoren, die Funktion von Flüssigkeitsverteilern oder
    und Synchronität der jeweiligen Anwendungen und Pro-        die Anströmbedingungen in Rohrbündeln. Die Ansprüche
    zesse der Chemieindustrie ein entscheidender Faktor, der    an eine flexible temporäre Zusatzinstrumentierung unter-
    in diesem Zusammenhang oft unklar ist und bislang nur       scheiden sich dabei teils deutlich von den Ansprüchen, die
    unzureichend untersucht wurde.                              typischerweise an die permanent genutzte Sensorik der
                                                                Kernautomatisierung gestellt werden. Während die An-
    Der Aufwand für kabelgebundene Energieversorgung            sprüche der Anwender bezüglich Präzision und Verfügbar-
    kann durch Ansätze energieautarker Sensorik reduziert       keit der Messung unter Umständen geringer sein können,
    werden. So können Sensoren deutlich leichter an schwer      werden Aufwand und Kosten für die sichere Installation
    zugänglichen Stellen ohne verfügbare Stromversorgung        solcher Sensorik, auch während des Anlagenbetriebs, zu
    installiert werden. Darüber hinaus ergeben sich Möglich-    kritischen Größen. Konsequenterweise wünschen sich An-
    keiten überall dort, wo Kabelausführungen nicht oder        wender Konzepte, die eine unkomplizierte, kostengünsti-
    nur mit großem Aufwand möglich sind. Beispiele hierfür      ge und flexible Anbindung und Nutzung von zusätzlicher
    sind Sensoren, die sich vollständig im Inneren einer An-    Sensorik erlauben. Von besonderem Interesse sind hier
    lage oder in geschlossenen Einwegsystemen, wie Single-      wieder Clamp-On-Sensoren, deren Installation keinen Ein-
    Use-Bioreaktoren, befinden. Herausforderungen auf dem       griff in die Anlage erfordert. Alternativ können Konzepte
    Weg zu energieautarken Sensoren sind zum einen die          für Einwegsensoren entwickelt werden, die in die Anlagen
    Entwicklung energieoptimierter Sensoren, zum anderen        oder Komponenten integriert werden, aber nur eine be-
    die lokale Versorgung mit ausreichend Energie. Während      grenzte Lebensdauer haben und damit nur in der initialen
    die Verwendung von Batterien hierzu in manchen Anwen-       Phase des Anlagenbetriebs Daten liefern. Auch Multipara-
    dungen unbedenklich erscheint, kann sie in anderen,         metersensoren mit bedarfsweiser Erfassung zusätzlicher
    z. B. in explosionsgefährdeten Bereichen, durchaus prob-    Größen können einen Lösungsansatz darstellen.
    lematisch sein. Insbesondere hier können Methoden des
    Energy Harvesting, bei dem lokal kleine Mengen Energie
    beispielsweise aus Temperaturunterschieden, Struk-
    turschwingungen oder Strömungen gewonnen werden,
    eine vielversprechende Alternative darstellen. Dafür sind
    umfangreiche Forschungs- und Entwicklungsarbeiten,
    sowohl zur Minimierung des Energieverbrauchs der Sen-
    soren als auch zur Maximierung der Effizienz der Energie-
    ernte, zu leisten.

8
5 Datenübertragung und Sensorkommunikation

Im Gegensatz zu zentralisierten Kommunikationssyste-         forderungen an Stromversorgung und Explosionsschutz
men, wie wir sie heute in der Prozessautomation antref-      heute weiterhin dominant. Als wesentlicher Nachteil die-
fen, basieren das weltweite Internet sowie die moderne       ser Situation ist die Komplexität hinsichtlich Installation
Telekommunikation seit vielen Jahren auf verteilten Netz-    und Wartung mit erhöhten Anforderungen an das Fach-
werken. Dort melden sich Teilnehmer im System mit ihren      wissen des Personals zu nennen. OPC-UA wird bereits zur
Fähigkeiten an und werden optimal ausgelastet. Unter         Verbindung von Automatisierungskomponenten in den
dem Begriff Industrie 4.0 entwickelte Konzepte führen        höheren Hierarchien eingesetzt, etwa zu ERP- oder Pro-
zu einer „Auflösung der Automatisierungspyramide“ und        duktionsassistenzsystemen. Zukünftig wird der Standard
ermöglichen eine flexible Produktion mit adaptiven, sich     aber auch auf Geräteebene und Feldebene möglich sein
selbst konfigurierenden, selbstorganisierenden, flexib-      und kann hier für smarte Automatisierungskomponenten
len Produktionsanlagen mit hohem Vernetzungsgrad und         in der Feldebene genutzt werden. Deren Rechenleistung
hochverfügbaren Informationsdiensten.                        wächst, um OPC-UA-Kommunikation und andere Rechen-
                                                             operationen, wie etwa Verschlüsselungsaufgaben oder
Für die störungsfreie Kommunikation aller Automatisie-       Datenanalysen, energiesparend effizient auszuführen.
rungskomponenten untereinander wird ein einheitliches        Gleichzeitig muss sichergestellt werden, dass Informatio-
Protokoll und ein einheitlicher Feldbus benötigt. Mittler-   nen weitergegeben werden, die an anderer Stelle im Pro-
weile gilt der Standard OPC Unified Architecture (OPC-UA,    zess oder in der Anlage erforderlich sind, um aus deren
IEC 62541) als gesetzt und die Verbände arbeiten an der      Kombination Schlüsse ziehen zu können. Hierfür müssen
Ausgestaltung der Semantik. Nicht-Ethernet-Feldbusse         geeignete Standards zur eindeutigen Weitergabe vorver-
sind vor dem Hintergrund einer gewachsenen Landschaft        arbeiteter Daten und Merkmale entwickelt werden.
in bestehenden Anlagen und den oft sehr speziellen An-

                                                                                                                           9
sensorik für die digitalisierung chemischer produktionsanlagen

     Eine durchgängige Ethernet-basierte Kommunikation ist
     über das Advanced Physical Layer (APL) mit der Geschwin-
     digkeit und Flexibilität von Standard-Ethernet- und IP-
     Technologien auf der Basis von einfacher Zweileitertech-
     nik in Sicht. APL ist eine 2011 begonnene, durch die IEEE
     Standards Association koordinierte Initiative mit Ziel der
     Fertigstellung 2022 nach Abschluss aller Konformitäts-
     tests. Die Basis stellt eine Zweidraht-Ethernet-Verbindung
     nach 10BASE-T1L auf Basis des Ethernet-Standards IEEE
     802.3 dar, so dass bestehende Zweidrahtverbindungen
     genutzt werden können. Ziel von APL ist die Überwindung
     der Abhängigkeit von proprietären Protokollen. Gleichzei-
     tig wird eine Anpassung an die Anforderungen an typische
     Netzwerkausdehnungen mit Hilfsenergie-Versorgung bis
     500 mW pro Gerät für bis zu 50 Geräte vorgesehen, die
     auch eine Installation in explosionsgefährdeten Berei-
     chen ermöglichen soll. Alternativ dazu werden auch draht-
     lose Standards Einzug halten, wie z. B. der 5G-Standard.

     Die Definition offener und zugleich sicherer Schnittstel-
     len ist eine der größten, wichtigsten und zugleich dring-
     lichsten Aufgaben der Digitalisierung, ohne die es nicht
     weitergeht. Zur Definition einer sicheren Datenübertra-
     gung müssen als erstes prinzipielle Anforderungen und
     Geschäftsmodelle festgelegt werden. Nur auf einer sol-
     chen Basis kann eine sichere Kommunikationsarchitektur
     von den Experten für Datensicherheit gestaltet werden.
     Ein erster Schritt zur Bereitstellung zusätzlicher Daten-
     kanäle wird im NOA-Konzept (NAMUR Open Architecture)
     gemeinsam durch NAMUR und ZVEI vorangebracht. Weil
     Instandhaltungs- und Betriebsfunktionen einen großen
     Nutzen haben, decken einige innovative Unternehmen der
     Prozessindustrie ihre Anlagen derzeit flächendeckend mit
     zusätzlichen Netzwerkzugängen aus, meist über Wireless-
     Technologien. Ebenso sind Firmen dazu übergegangen,
     ihre Asset- und Anlagenpläne komplett zu digitalisieren.
     Zur Gewährleistung der Datensicherheit erfolgt der Sen-
     sorzugriff über gestufte Zugriffsrechte und Benutzergrup-
     pen. Hier ist es eine fortwährende Aufgabe von Anwen-
     dern und Geräteherstellern, einheitliche Standards für
     die Sicherheit und die Funktionalität zu schaffen und den
     aktuellen Anforderungen anzupassen. Derzeit werden u. a.
     Ticket-basierte Zugriffsrechte anstatt von Passwörtern
     diskutiert, da letztere in einer Automatisierungsland-
     schaft von mehreren tausend Geräten und vor dem Hin-
     tergrund wechselnden Personals nicht handhabbar sind.

10
6 Sensorintelligenz

Die Technologie-Roadmap „Prozess-Sensoren 4.0 – Vor-         Hinblick auf die Entwicklung des Anlagenzustands. Auch
aussetzungen für die zukünftigen Automatisierungskon-        eine dynamische, der prognostizierten Entwicklung des
zepte“ formuliert eine Reihe von Anforderungen für smar-     Anlagenzustands angepasste Selbstparametrierung von
te Prozesssensoren als Bestandteile von cyberphysischen      Sensorsystemen, etwa im Hinblick auf Messbereich und
Produktionssystemen, welche erst im Ansatz als realisiert    Auflösung, oder die Auswahl und optimale Ausnutzung
angesehen werden können. Diese Anforderungen sind            der Bandbreite sowie der Datenfilterung auf Basis von
Konnektivitäts- und Kommunikationsfähigkeit (siehe auch      Orchestrierungsinformationen aus dem digitalen Zwilling
Abschnitt 5), Interaktionsfähigkeit, Instandhaltungs- und    und aus dem Anlagenkontext fallen in diese Kategorie.
Wartungsfunktionen, Rückverfolgbarkeit und Compliance        Forschungsbedarf besteht hier hinsichtlich der technisch
sowie eine virtuelle Beschreibung.                           und wirtschaftlich sinnvollen Ausgestaltung der System-
                                                             architektur, zum Beispiel der Verteilung notwendiger Res-
Interaktionsfähigkeit, also die Fähigkeit von Sensoren,      sourcen zwischen beteiligten Sensoren und Systemkom-
untereinander Informationen auszutauschen und zu be-         ponenten zur Durchführung solcher Bewertungen. Auch
werten, wird als wichtiger Bestandteil vorausschauender      die betreffende Algorithmik hierfür, welche selbstlernend
Konzepte für die Anlagenüberwachung betrachtet. Fallen       in Bezug auf den Betrieb der individuellen Anlage sowie
an einer Messstelle etwa primäre oder sekundäre Mess-        teilhabend am Maschinenlernen vergleichbarer Anlagen
werte auf, die sich außerhalb bestimmter Grenzen bewe-       ausgeführt werden sollte, stellt dabei einen zentralen zu-
gen, erfolgt mittels definierter Weitergabe solcher Infor-   künftigen Forschungsschwerpunkt dar.
mation eine zweckgerichtete „Sensibilisierung“ weiterer
Sensoren in einer relevanten Umgebung sowie eine in-         Smarte Sensoren sollen ihre spezifikations- bzw. anwen-
tegrierte, vorausschauende Bewertung der Datenlage im        dungsgerechte Funktionsfähigkeit so weit wie möglich

                                                                                                                          11
sensorik für die digitalisierung chemischer produktionsanlagen

     selbst überwachen können und dem Betreiber bzw. sei-          komponenten wird bereits umfänglich geforscht und ent-
     nem Instandhaltungsdienstleister im Fall von Abweichun-       wickelt. Anforderungen und Anwendungsfälle sind hierbei
     gen, möglichst vorausschauend und von sich aus, zweck-        vielfältig und reichen von der zuvor genannten Abbildung
     mäßige Hinweise zur Instandhaltung geben. Im Hinblick         der Gerätehistorie in online verfügbaren Datenbanken bis
     auf die Erfassung des momentanen Diagnosezustands             zu selbstlernender Modellierung und Simulation mit dem
     von Sensoren ist hier in den vergangenen Jahren bereits       Ziel der Prozess- und Betriebsoptimierung. Zukünftige
     einiges an Anforderungen realisiert worden. Als aktuelle      Forschungsschwerpunkte dürften sich um die Frage her-
     und zukünftige Forschungsschwerpunkte sind vor allem          um ergeben, wie Architekturen bzw. Datenmodelle für di-
     noch die Fähigkeit zur vorausschauenden Zustandsbe-           gitale Zwillinge so modular realisiert werden können, dass
     wertung auch, jedoch nicht ausschließlich, unter Berück-      sie den vielfältigen Anforderungen im Lebenszyklus einer
     sichtigung von Plausibilitätsbetrachtungen bestimmter         Anlage flexibel angepasst werden können. Zu berücksich-
     primärer Messwerte im Kontext mit Messwerten ande-            tigen ist hierbei insbesondere das Wechselspiel von digi-
     rer Sensoren, sowie zu einer metrologisch akzeptablen         talem Zwilling als virtuelles Modell (Typ) und operativer
     Selbstkalibrierung von Sensorsystemen einschließlich          Instanz (physische Komponente oder Anlage) sowie der
     einer Selbstjustierung zu nennen. Hier ist weitere For-       Informationsaustausch zwischen diesen Welten. Eine gute
     schung und Entwicklung bezüglich der praxisgerechten          Basis für eine solche Architektur stellt das Referenzarchi-
     Unterstützung des Instandhaltungspersonals mittels            tekturmodell RAMI 4.0 (DIN SPEC 91345) mit den beiden
     elektronisch verfügbarer, relevanter Dokumentation und        Achsen Lebenszyklus und Wertschöpfungskette dar.
     Hilfsmittel (etwa bedarfsgerechte Instandhaltungsvideos)
     erforderlich.                                                 Da Implementierung und Kalibrierung der Sensoren heu-
                                                                   te einen enormen Anteil im Gesamtaufwand ausmachen,
     Das Ziel einer anforderungsgerechten Rückverfolgbarkeit       bringt auch die Einführung von Konzepten zur Selbst-
     in kompletten industriellen Lieferketten fasst mehrere        kalibrierung einen erheblichen Nutzen. Zum einen kann
     Aspekte der modernen Qualitätssicherung zusammen.             Redundanz im System oder Prozess genutzt werden. Ein
     Wichtige Aspekte sind die Rückverfolgbarkeit des Werde-       Beispiel wäre die oben genannte Verarbeitung von zusätz-
     gangs sowie der Wartungs- und Instandhaltungshistorie         lichen Informationen aus Sensoren und Aktoren der Um-
     der Sensoren selbst sowie die Validität der von ihnen ge-     gebung. Auf Basis von sehr zuverlässigen Informationen
     lieferten primären und sekundären Messwerte. Eine vor         zum Zustand von Sensoren aus seinem digitalen Zwilling,
     Manipulation geschützte Dokumentation dieser Historien        der Kalibrierhistorie und den historischen Messdaten
     kann heute als im Ansatz vorhanden betrachtet werden.         sind zukünftig sehr präzise und aktuelle Aussagen über
     Die weitere Forschung in diesem Themengebiet muss sich        den Sensor als Prüfmittel verfügbar, die jeder Qualitäts-
     unter Berücksichtigung moderner Informations- und Netz-       und Sicherheitsanforderung gerecht werden. Natürlich ist
     werktechnologien auf eine sachlich angemessene und            auch die Weiterentwicklung von physikalischen Konzepten
     wirtschaftlich sinnvolle Optimierung mit Blick auf die Lie-   zur Selbstkalibrierung wichtig. So sind bereits Sensoren
     ferkettenintegration konzentrieren. Eine enge Verbindung      mit intern rückführbarer Kalibrierung erhältlich, die ihren
     zum nachfolgenden Punkt der virtuellen Beschreibung           Messwert unter gegebenen Einsatzbedingungen eigen-
     von Sensoren erscheint hierbei sinnvoll, da sich das ge-      ständig von Zeit zu Zeit primär ableiten können, wie z. B.
     nannte Optimierungsproblem auch auf die Frage der Ver-        spezielle Temperatursensoren mit eingebautem Fixpunkt.
     fügbarkeit von Compliance-Nachweisen innerhalb bzw.           Auch die vor kurzem erfolgte Umstellung des SI-Systems
     außerhalb des Sensorsystems im engeren Sinne bezieht.         schafft neue Perspektiven durch Integration von Primär-
                                                                   standards, wie zum Beispiel Chip-Sized-Atomic-Clock für
     Allgemein werden durch die Nutzung von digitalen Pla-         Zeit/Frequenz, Quanten-Halleffekt für Spannung, direkt
     nungswerkzeugen von Anlagen vermehrt einheitliche             in den Messsystemen. Dazu gehören zukünftig vermehrt
     digitale Beschreibungen der Sensoren notwendig. Ihre          Funktionen zur Selbstregenerierung bzw. Selbstreparatur.
     technischen Daten oder Funktionalitäten müssen in Form        Beispielsweise stellen die Wartung und der Wechsel von
     von dynamischen Modellen zu Verfügung stehen. Diese In-       pH-Sensoren als häufig genutzte chemische Sensoren
     formationen sollen wiederum weiteren Hierarchie-Ebenen        heute immer noch einen erheblichen Aufwand dar.
     zur Verfügung stehen, um etwa eine Produktionseinheit
     (und später sogar eine ganze Fabrik) zu simulieren und        Im Zusammenhang mit dem Kontext der jeweiligen Daten,
     zu betreiben. An Konzepten zum sogenannten digitalen          d. h. wann der Sensor an welcher Stelle für welchen Pro-
     Zwilling einzelner Sensorsysteme sowie anderer Anlagen-       zess mit welchem Messergebnis eingesetzt wurde, lassen

12
sich Plausibilitätsbeziehungen und Zuverlässigkeitsin-
formationen ableiten. Das heißt, die Funktionsüberwa-
chung des Sensors erfolgt nicht nach festen Grenzwerten,
sondern an Hand der im digitalen Zwilling gespeicherten
Historie. Dieses erweitert die heutigen Möglichkeiten
um Plausibilitätsbetrachtungen und statistische Aussa-
gen aller Automatisierungskomponenten, um Drift oder
Beschädigungen schneller zu erkennen und abzustellen
die ansonsten unerkannt blieben und weitere Messwerte
verfälschen würden. Darüber hinaus können diese sekun-
dären Sensoren auf Basis einer Risikobetrachtung als re-
dundante Messwertaufnehmer in das Sicherheitskonzept
der Anlage mit einbezogen werden. Hinterlegte Plausi-
bilitätsbetrachtungen dienen zur Einschätzung der Aus-
fallwahrscheinlichkeit. Werden diese Informationen kon-
textbezogen, aber anonymisiert an den Sensorhersteller
weitergegeben, werden sie zur Verbesserung des Sensors
bzw. seines digitalen Zwillings im Produktionssystem, den
bedarfsorientierten Instandhaltungsmaßnahmen und der
Beurteilung der tatsächlichen Sicherheitsreserven ver-
wendet werden können.

Über die Schnittstellen des Feldgeräts zur Außenwelt in
Verbindung mit den Kontextinformationen lassen sich
ferner alle erdenklichen Informationsdienste (in Form
von Apps) ermöglichen. Neu ist dabei, dass das Feldgerät
ergänzende, heute nicht zur Verfügung stehende Bezugs-
daten selbständig aus dem Internet holen kann, wie etwa
Wetterinformationen. Damit können ganz neue Dienste
angeboten werden. Eine digitalisierte Prozessindustrie
hebt sich gegenüber gegenwärtigen Produktionskonzep-
ten also auch dadurch ab, dass es zu einem Mehrwert
an Informationen durch Einbeziehung von Cloud-Wissen
kommt.

                                                            13
sensorik für die digitalisierung chemischer produktionsanlagen

     7 Sensordatenverarbeitung

     Wie weiter oben schon angemerkt, stellt häufig nur die      neue Modelle mit bisher nicht betrachteten Spezifika-
     Kombination von Rohdaten in Verbindung mit Kontextin-       tionen angesetzt werden, etwa auf Basis einer neuen
     formationen bzw. im Zusammenhang mit weiteren Roh-          Kundenspezifikation oder zur Betrachtung von ande-
     daten einen Wert dar. In vielen Fällen können Rohdaten      ren Qualitätsmerkmalen, wie etwa der Auswertung von
     reduziert weitergegeben werden, wenn dieses kontextbe-      Streuinformationen zur Beurteilung der Morphologie des
     zogen jeweils für die Anwendung ausreicht. Es darf aber     Produktes über Streulichtanteile im Spektrum, die in den
     nicht vergessen werden, dass zukünftige Auswertungs-        reduzierten Daten nach Bildung der Ableitung eliminiert
     techniken ggf. andere Anforderungen an die Daten haben.     wurden. Aufgabe zukünftiger Forschung und Entwicklung
     Daher ist es ggf. sinnvoll, in einem vertretbaren Aufwand   wird sein, einen Leitfaden zur Datenerfassung abzuleiten,
     „Datenschnipsel“ der Rohdaten zu archivieren, d. h. die     um eine risikobasierte Entscheidung zu ermöglichen und
     vollen Rohdaten über einen ausreichend langen Zyklus        daraus die richtige Daten-Dimension und ein Konzept zur
     einige Male am Tag, entsprechend der Variabilität des       Datenspeicherung abzuleiten. Die Datendimensionalität
     Prozesses, zu sichern. Somit lassen sich Rohdaten auch      ergibt sich aus Abtastrate x Datendichte x Informations-
     posthum noch mit neuen Modellen in vollem Umfang aus-       dichte.
     werten. Ein Beispiel dazu ist die Freigabe von Produkten
     oder Zwischenprodukten mit einer prozessanalytischen        Mit großem Interesse werden von den Anwendern derzeit
     Online-Methode und einem Modell zur Überwachung der         Vibrationssensoren und akustische Sensoren betrachtet,
     vorgegebenen Spezifikationen auf Basis von vorbehan-        d. h. zusätzliche Sensoren, die Informationen zur War-
     delten und ggf. reduzierten Daten, etwa die Aufnahme        tung und Optimierung von Prozessen der Industrie er-
     eines NIR-Spektrums, dessen Vektor-Normalisierung und       möglichen. Auch die Beschreibung von Datenformaten für
     Bildung einer Ableitung, auf die das Modell angesetzt       Neuronale Netzwerke („Grey-Box-Modell“) sind wichtige
     wird. Liegen die Rohdaten vor, können diese später auf      Grundlagen für die Nutzung smarter Daten. Dazu laufen
                                                                 bereits Leuchtturmprojekte, insbesondere bei den Ver-
                                                                 bänden NAMUR und ZVEI.

                                                                 Zukünftig wünschen sich die Anwender eine Vereinfa-
                                                                 chung des Datentransfers zu Modellanwendungen, die
                                                                 ähnlich der oben beschriebenen „Kapselung“ der Kom-
                                                                 plexität von Sensoren auch die Komplexität der Daten-
                                                                 nutzung auf das Verständnisniveau eines Ingenieurs oder
                                                                 eines typischen Anwenders reduziert, so dass nicht in je-
                                                                 dem Fall das Spezialwissen eines Data Scientists benötigt
                                                                 wird. Dieses ist eine wichtige Voraussetzung für eine brei-
                                                                 te Akzeptanz und eine technische Kultur für die Datennut-
                                                                 zung. Auf diesem Weg sind auch Werkzeuge zu schaffen,
                                                                 die zumindest in einer Lern- und Übergangsphase nach-
                                                                 vollziehen lassen, auf welcher Basis eine Modellbildung
                                                                 oder ein Algorithmus begründet ist, insbesondere, wenn
                                                                 Werkzeuge der künstlichen Intelligenz eingesetzt werden.
                                                                 Vergleichbare Anforderungen bestehen heute in der Che-
                                                                 mometrie, um Korrelation und Kausalität voneinander zu
                                                                 unterscheiden. In der Hauptkomponentenanalyse (PCA)
                                                                 und verwandten Methoden werden dazu Interpretation
                                                                 von „Scores“ und „Loadings“ herangezogen, z. B. um ihre
                                                                 Plausibilität auf Basis physikalischer oder chemischer In-
                                                                 formationen (z. B. Spektren) zu bewerten.

14
8 Empfehlungen für die Forschung und Entwicklung

Aus dem oben zusammengefassten Stand von Wissen-               re Verbundprojekte gefördert werden können, ist es für
schaft und Technik, den bestehenden Anforderungen und          den Erfolg vorwettbewerblicher Entwicklungsprojekte
den identifizierten Lücken ergibt sich ein konkreter Be-       enorm wichtig, größere Verbünde mit verschiedenen
darf für die zukünftige mittelfristige und langfristige For-   Partnern aus allen Bereichen der Wertschöpfungskette,
schung und Entwicklung auf dem Gebiet der Sensorik und         d. h. Grundlagenforschung und Ausbildung, Messtech-
Messtechnik für die Digitalisierung der chemischen Pro-        nikentwicklung, Automatisierungstechnik, Anlagenbau
duktion. Während Hersteller von Sensor-, Mess- und Auto-       und Anlagenbetrieb, zu initiieren und zu fördern. In die-
matisierungstechnik in der Regel produktspezifische Ent-       sen sollten Messtechnikentwicklung, Demonstration von
wicklungen der wettbewerblichen Forschung vollständig          Funktionsfähigkeit, Robustheit und Kosteneffizienz im
aus ihren eigenen Forschungs- und Entwicklungsbudgets          Labor und an geeigneten Anlagen ganzheitlich erfolgen.
bestreiten, erfordern grundlegend neue Entwicklungen           Während die Beteiligung von Forschungsinstituten und
sowie vorwettbewerbliche Forschung und Entwicklung,            Universitäten der Weiterentwicklung des Wissenschafts-
etwa zum Technologietransfer vom Labor an die Anlage,          standes förderlich ist, sollten ebenfalls Partner aus dem
Demonstration der Funktionsfähigkeit, Benchmarks, all-         Prüf- und Standardisierungswesen eingebunden werden
gemeine Kostenanalysen sowie Vereinheitlichung und             bzw. Wege zur Standardisierung von Produkten und Tech-
Standardisierung von Konzepten, eine Unterstützung             nologien aufgezeigt werden.
durch Forschungsförderung der öffentlichen Hand im Rah-
men von Verbundforschungsvorhaben.                             Untergliedert nach Anwendungsbezug und Reifestadium
                                                               wurden die folgenden Forschungs- und Entwicklungs-
Während Entwicklungen im Bereich der Grundlagenfor-            schwerpunkte identifiziert.
schung sehr spezifisch durch Einzelprojekte und kleine-

                                                                                                                           15
sensorik für die digitalisierung chemischer produktionsanlagen

     Grundlagenforschung ist vor allem in zwei Teilbereichen     Vorwettbewerbliche angewandte Forschung und Ent-
     von erheblicher Bedeutung:                                  wicklung muss vor allem folgende Problemstellungen
                                                                 adressieren:
     1.   Entwicklung neuer Messtechniken auf Basis bisher
          wenig genutzter physikalischer, chemischer oder        1.   Entwicklung von robusten, miniaturisierten Sensor-
          biochemischer Wirkprinzipien oder völlig neuer Ba-          systemen für die Zustandsüberwachung und die Mes-
          sistechnologien. Beispiele sind Messverfahren auf           sung stoffbezogener Größen
          Basis natürlicher Strahlung, Röntgenstrahlung, ma-
          gnetischer Felder oder Kernspinresonanz, Verfahren     2.   Konzepte für kosteneffiziente verteilte Sensoren
          der Prozesstomographie, Verfahren der Impedanz-
          spektroskopie oder Ionenmobilitätsspektrometrie        3.   Qualifizierung von Fertigungsverfahren für Sensoren,
          oder Quantenkaskadenlaser.                                  zum Beispiel Siebdruck, 3D-Druck, Dünnschichttech-
                                                                      nik oder MEMS-Technologien
     2.   Nutzung und Qualifizierung fortschrittlicher Metho-
          den der Signal- und Datenverarbeitung zur Analyse      4.   Technische Qualifizierung von Sensoren für raue
          komplexer hochdimensionaler Sensordaten. Beispiel           Einsatzbedingungen (hohe und tiefe Temperaturen,
          sind Analyse von Bilddaten, Spektren, akustische Da-        hohe Drücke, aggressive Medien)
          ten oder Analysen von Sensordaten aus Mehrphasen-
          systemen.                                              5.   Qualifizierte und standardisierte Sensorschnittstel-
                                                                      len an Prozessanlagen, zum Beispiel standardisierte
     Angewandte Grundlagenforschung zielt insbesondere                Zugangsports für Sensoren und Sensorlanzen, Pro-
     auf die Qualifizierung bisher teilweise wenig erprobter          zessfenster, robuste Konzepte zur faseroptischen An-
     Technologien mit speziellem Anwendungsbezug, also für            kopplung optischer Sensoren
     konkrete Herstellungsprozesse, Grundoperationen und
     Anlagentypen. Beispiele sind:                               6.   Neue Konzepte kabelloser und kabelgebundener
                                                                      Kommunikation und deren Standardisierung
     1.   Gewinnung und Analyse multisensorieller und multi-
          modaler Daten                                          7.   Entwicklung modularer Sensorsystemkonzepte mit
                                                                      sensornaher Signalverarbeitung
     2.   Entwicklung und Demonstration von Ansätzen zur
          Softsensorik                                           8.   Entwicklung und Erprobung von Konzepten für Sen-
                                                                      soren für den zeitweisen Betrieb
     3.   Vergleichende Bewertung und Qualifizierung von
          Techniken des Energy Harvestings                       9.   Ansätze und Demonstration von Konzepten zur Er-
                                                                      höhung der Sensorintelligenz (Interaktionsfähigkeit,
     4.   Qualifizierung neuer Materialien und Technologien           intelligente Instandhaltung, Rückverfolgbarkeit,
          für Sensoren für raue Einsatzbedingungen (hohe und          Selbstkalibrierung, Funktionsüberwachung, Einbe-
          tiefe Temperaturen, hohe Drücke, aggressive Medien)         ziehung von Cloud-Wissen), Standardisierung

     5.   Qualifizierung von bildgebenden, akustischen und       10. Konzepte des digitalen Zwillings für Sensoren, ins-
          spektralen Sensoren sowie Schall-, Radar- und Lidar-       besondere zu Zwecken der Prozessmodellierung und
          Systemen für schwierige und störbehaftete Prozess­         Simulation
          umgebungen
                                                                 11. Entwicklung eines Leitfadens zur digitalen Datener-
     6.   Entwicklung neuer Konzepte für intelligente Senso-         fassung für die chemische Produktion
          ren für spezielle Prozesse und Prozessumgebungen

     7.   Entwicklung von Konzepten der Sicherheit offener
          Schnittstellen in Sensor- und Produktionsnetzwerken

16
17
DECHEMA
Gesellschaft für Chemische Technik
und Biotechnologie e.V.
Theodor-Heuss Allee 25
60486 Frankfurt am Main
Telefon: 069 7564-0
Telefax: 069 7564-117
E-Mail: info@dechema.de
Sie können auch lesen