Lösungsbuch TECHNISCHES ENGLISCH - EUROPA-FACHBUCHREIHE für metalltechnische Berufe
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
EUROPA-FACHBUCHREIHE für metalltechnische Berufe Lösungsbuch TECHNISCHES ENGLISCH zur FACHKUNDE METALL 1. Auflage VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG Düsselberger Straße 23 · 42781 Haan-Gruiten Europa-Nr.: 11028
Autoren: Dr. Eckhard Ignatowitz Dr.-Ing., Dipl.-Ing. StR. a. D. Waldbronn Christina Murphy Dipl.-Berufspäd. (Univ.) StDin Wolfratshausen Falko Wieneke Dipl.-Ing. StD Essen Bei der Übersetzung war behilflich: Heinz Bernhardt Gymnasiallehrer OStR a. D. Waldbronn Wolfgang Peter-Michel Overath Leitung des Arbeitskreises und Lektorat: Dr. Eckhard Ignatowitz Bilder und Bildentwürfe: Ein Teil der Bilder stammen aus dem Buch Fachkunde Metall oder sind auf der Basis dieser Bilder erstellt. Weitere Bilder wurden von Unternehmen zur Verfügung gestellt, entstammen dem Bilderarchiv des Ver- lags oder wurden von den Autoren entworfen. Die Autoren danken den Autoren der Fachkunde Metall, den Unternehmen sowie dem Verlag Europa- Lehrmittel für die Bereitstellung der Bilder. Bildbearbeitung: Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern 1. Auflage 2021 Druck 5 4 3 2 1 Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern identisch sind. ISBN 978-3-7585-1102-8 Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der ge- setzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden. © 2021 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten www.europa-lehrmittel.de Satz: Satz+Layout Werkstatt Kluth GmbH, 50374 Erftstadt Umschlag: Grafische Produktionen Jürgen Neumann, 97222 Rimpar Umschlagfotos: Sauter Feinmechanik GmbH, 72555 Metzingen, © md3d und © somartin – Fotolia.com Druck: RCOM Print GmbH, 97222 Rimpar
Vorwort 3 Vorwort Dss Lösungsbuch Technisches Englisch für die Fachkunde Metall dient zur Erarbeitung und Überprü- fung der Exercices (Übungen) im Lehrbuch Technisches Englisch für die Fachkunde Metall. Es enthält die Fragen bzw. Aufgaben der Exercises aus dem Lehrbuch und die dazu gehörenden Ant- worten bzw. Lösungen. Die Antworten/Lösungen sind in Blau gedruckt und heben sich dadurch deutlich von den in Schwarz gedruckten Fragen/Aufgaben ab. Die Exercises sind in derselben Reihenfolge und Kapitelnummerierung wie im Lehrbuch Technisches Englisch für die Fachkunde Metall angeordnet. Eine zusätzliche Seitenangabe lässt die jeweiligen Exer- cises im Lehrbuch rasch auffinden. Nach jedem Kapitel bietet das Lösungsbuch eine Seite mit einer Übungseinheit (Test unit) zur Leis- tungsüberprüfung an. Die Übungseinheit kann vom Lernenden als selbstgestellte Überprüfung seines Wissensstandes ge- nutzt werden oder kann vom Lehrer durch Kopieren als Klassensatz zur Leistungsüberprüfung der Klas- se verwendet werden. Autorisierte Lehrkräfte können die Lösungen der Übungseinheiten auf der Website des Verlags Europa- Lehrmittel einsehen. Internetadresse: www.europa-lehrmittel.de Sollten Sie Verbesserungsvorschläge zum Lösungsbuch haben, so freuen wir uns auf Ihre Zuschrift. Bitte senden Sie Ihre Hinweise und Vorschläge per E-Mail an: lektorat@europa-lehrmittel.de Sommer 2021 Die Autoren, der Verlag
4 Table of Contents Inhaltsverzeichnis Answers to the questions in the book TECHNISCHES ENGLISCH zur FACHKUNDE METALL 1 Measuring technique . . . . . . . . . . . . . 6 3 Production engineering . . . . . . . . . . . 20 Prüftechnik Fertigungstechnik 1.1 Physical quantities and units . . . . . . . . . . 6 3.1 Safety at work . . . . . . . . . . . . . . . . . . . . . . 20 Physikalische Größen und Einheiten Arbeitssicherheit 1.2 Fundamentals of measuring technique . 7 3.2 Prevention of accidents . . . . . . . . . . . . . . 21 Grundlagen der Messtechnik Vermeidung von Unfällen 1.3 Length Measuring Instruments . . . . . . . . 8 3.3 Overview of manufacturing p rocesses . 21 Längenmessgeräte Überblick der Herstellungsverfahren 1.4 Vernier calliper . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Messschieber Gießen 1.5 Micrometer (screw gauge) . . . . . . . . . . . . 9 3.5 Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Bügelmessschraube Umformen 1.6 Surface testing . . . . . . . . . . . . . . . . . . . . . . 10 3.6 Basics of metal-cutting manufacturing . 23 Oberflächenprüfung Grundlagen der spanenden Fertigung 1.7 Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Passungen 3.7 Filing and sawing by hand . . . . . . . . . . . . 24 Feilen und von Hand sägen 1.8 Fit Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11 Passungssysteme 3.8 Cutting materials . . . . . . . . . . . . . . . . . . . . 24 Schneidestoffe Test unit for Measuring technique . . . . . 13 3.9 Cooling lubricants for cutting . . . . . . . . . 25 Kühlschmierstoffe zum Spanen 2 Quality management . . . . . . . . . . . . . 14 Qualitätsmanagement 3.10 Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bohren 2.1 Basics of quality management . . . . . . . . 14 Grundlagen des Qualitätsmanagement 3.11 Tapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Gewindebohren 2.2 Quality tools . . . . . . . . . . . . . . . . . . . . . . . . 14 Qualitätswerkzeuge 3.12 Countersinking (counterboring) . . . . . . . 26 Senken 2.3 Normal distribution . . . . . . . . . . . . . . . . . . 15 Normalverteilung 3.13 Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Statistical characteristics of data Drehen quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.14 Milling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Statistische Kennwerte von Fräsen Datenmengen 3.15 Grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.5 Machine capability . . . . . . . . . . . . . . . . . . . 16 Schleifen Maschinenfähigkeit 3.16 Overview of joining technologies . . . . . . 29 2.6 Process capability . . . . . . . . . . . . . . . . . . . 17 Überblick der Verbindungstechniken Prozessfähigkeit 3.17 Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Statistical process control with quality Schweißen control chart . . . . . . . . . . . . . . . . . . . . . . . . 17 Statistische Prozessregelung mit 3.18 Assembly technique . . . . . . . . . . . . . . . . . 30 Qualitätsregelkarten Montagetechnik Test unit for Quality management . . . . . 19 Test unit for Production engineering . . . 32
5 4 Material engineering . . . . . . . . . . . . . 33 5.7 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Werkstofftechnik Lager 4.1 Overview of materials . . . . . . . . . . . . . . . . 33 5.8 Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Überblick der Werkstoffe Dichtungen 4.2 Important properties of materials . . . . . . 34 5.9 Shafts, axles, couplings . . . . . . . . . . . . . . 50 Wichtige Werkstoffeigenschaften Wellen, Achsen, Kupplungen 4.3 Designation system for steels . . . . . . . . . 34 5.10 Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Bezeichnungssystem für Stähle Getriebe 4.4 Steel groups and their applications . . . . 35 5.11 Electric motors . . . . . . . . . . . . . . . . . . . . . . 52 Stahlgruppen und ihre Anwendungen Elektrische Motoren 4.5 Semi-finished steel products . . . . . . . . . . 36 Test unit for Mechanical engineering . . . 55 Stahl-Halbzeuge 4.6 Cast iron materials . . . . . . . . . . . . . . . . . . . 36 6 Electrical engineering . . . . . . . . . . . . 56 Gusseisen-Werkstoffe Elektrotechnik 4.7 Light metals . . . . . . . . . . . . . . . . . . . . . . . . 37 6.1 Electrotechnical basics . . . . . . . . . . . . . . . 56 Leichtmetalle Elektrotechnische Grundlagen 4.8 Heavy metals . . . . . . . . . . . . . . . . . . . . . . . 38 Schwermetalle 6.2 Types of current and electric networks . 57 Stromarten und elektrische Leitungs- 4.9 Sintered materials . . . . . . . . . . . . . . . . . . . 38 netzwerke Sinterwerkstoffe 6.3 Electric work and electric power . . . . . . . 57 4.10 Heat treatment of steels . . . . . . . . . . . . . . 39 Elektrische Arbeit und elektrische Wärmebehandlung der Stähle Leistung 4.11 Corrosion and corrosion protection . . . . 40 6.4 Faults in electrical systems . . . . . . . . . . . 58 Korrosion und Korrosionsschutz Fehler an elektrischen Anlagen 4.12 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 6.5 Protection measures . . . . . . . . . . . . . . . . . 58 Kunststoffe Schutzmaßnahmen Test unit for Material engineering . . . . . . 42 Test unit for Electrical engineering . . . . . 59 5 Mechanical engineering . . . . . . . . . . 43 Maschinentechnik 7 Technical communication . . . . . . . . 60 Technische Kommunikation 5.1 Classification of machines . . . . . . . . . . . . 43 Einteilung der Maschinen 7.1 Technical drawings . . . . . . . . . . . . . . . . . . 60 Technische Zeichnungen 5.2 Functional units of machines . . . . . . . . . . 43 Funktionseinheiten der Maschine 7.2 Presentation of technical relationships . 61 Darstellung technischer 5.3 Screw connections . . . . . . . . . . . . . . . . . . 44 Zusammenhänge 5.4 Schraubenverbindungen . . . . . . . . . . . . . 44 5.5 Shaft-hub connections . . . . . . . . . . . . . . . 46 Test unit for Technical communication . 63 Welle-Nabe-Verbindungen 5.6 Friction and lubricants . . . . . . . . . . . . . . . 47 8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 64 Reibung und Schmierstoffe Anhang
6 Measuring technique 1 Measuring technique 1.1 Physical quantities and units b) velocity v v = s : t; Velocity v is defined as the dis- Exercises page 6 tance s divided by time t. The SI unit for ve- locity is meter per second (m/s), defined as 1. Working with words. Which words from a distance measured in meter which is co the text are described here? vered in the duration of one second. a) Every material has certain physical quanti- c) density ϱ ties, for example it has a special density. ϱ = m : V; Density ϱ is defined as mass b) In order to find out the correct diameter of a m per volume V. The SI unit for d ensity is workpiece, you need to measure it with an kilogram per cubic meter (kg/m3), defined instrument. as a mass m measured in kilograms per vo lume V in cubic meters. c) The speed of a car is also called velocity. d) tension 2. Define physical quantities in German by σ = F : S; Tension σ is defined as a force using the information from the text above. F acting on a defined cross section S of a specimen in order to elongate him. The unit Die an einem Objekt (z. B. bei einem be for tension in engineering is Newton per stimmten Werkstoff) messbaren Eigen- Millimeter N/mm2. schaften, Vorgänge oder Zustände werden physikalische Größen genannt. e) electrical energy W W = P ∙ t; Electrical energy W is defined as the electrical power P multiplied by the 3. Answer the following questions in English. time t. The SI unit for electrical energy is a) Which two elements does a physical quan- Watt (W), defined as the power which gives tity have? Find an example to explain it. rise to energy of one Joule in one second. It consists of a numerical value and a unit. f) frequency f For example: A workpiece has a length l of f = 1 : T; Frequency f represents the num- 330 mm: ber of occurrences of a repeating event per 330 represents the numerical value and peroid time T. The SI unit for frequency is mm the unit. Hertz (Hz), defined as the rate of repetition b) Which 7 base quantities does the Interna- per duration of one second. tional System of Units SI define? The 7 base quantities defined by the Interna- 2. Convert the measurements from imperial tional System of Units SI are length, mass, units into metric units. (Use your Hand- time, electric current, temperature, amount book) of substance and luminous intensity. a) 120 miles in km c) What is the difference between base quan- 120 ∙ 1.609 km = 193.08 km tities and derived quantities? b) 3.300 ft in metres The base quantities cannot be transferred 3.300 ∙ 0.3048 m = 1.00584 m into another quantity, whereas the derived quantities can always be transferred back c) 1 ½ pints in litres into the base quantities. 1.5 ∙ 0.5683 l = 0.8525 l d) 4.5 ounces in kilogram Exercises page 7 4.5 ∙ 0.02835 kg = 0.1276 kg 1. Write down the formula and explain the e) 1/8 inch in mm correct derived units. (Use your Metal 0.125 ∙ 25.4 mm = 3.175 mm Trades Handbook) f) 22.5 pounds in kg a) pressure p 22.5 ∙ 0.4536 kg = 10.2060 kg p = F : a; Pressure p is defined as the effect of a force F applied to a surface a. The SI unit of pressure is Pascal (Pa), defined as a force of one Newton per square meter.
Fundamentals of measuring technique 7 3. Calculate the physical quantities by using f) the radius R5 SI-Units. radius gauge a) A compact disc (CD) has a diameter of 120 mm. Calculate the area in mm2. 3. Answer the questions in English. A = π ∙ r 2; a) What are dimensional representatives? ACD = π ∙ (60 mm)2 = 11309.724 mm2 Dimensional representatives are measur- b) The volume of a steel rod is 0.50 dm3 and ing devices allowing certain dimensions to has a density of 7.85 kg/dm3. Calculate the be compared with a measuring scale. mass in kg. b) Which result do you get when you use a m = ϱ ∙ V; gauge? Give an example. mrod = 7.85 kg/dm3 ∙ 0.50 dm3 = 3.925 kg A gauge is used to check whether a dimen- sion corresponds to the given standard. For c) A turning tool moves 9.3 cm in a time of example a plug limit gauge can be used to 3 seconds. Calculate the feed velocity in check whether the diameter of a hole is with- mm/s. in specified limits and therefore accurate. v = m : t; vftool = 93 mm : 3 s = 31 mm/s c) Which result do you get when you use an 1.2 Fundamentals of measuring indicative measuring device? Give an ex- ample. technique With an indicative measuring device, a nu- Exercises page 8 merical result is achieved. For example, when a shaft is measured with a vernier calliper. 1. Translate the following inspection aids and d) When do you need an auxiliary aid? Give an name the main group of these devices. example. a) plug limit gauge Auxiliary aids are used to fix objects in Grenzlehrdorn – Lehren (gauges) order to be able to measure them using measuring tools. For example to fix a shaft b) prism block in a prism block and finally check it with a Prisma – Hilfsmittel (auxiliary aids) dial indicator. c) folding rule Gliedermaßstab – Messtechnik (measuring Exercises page 9 devices) 1. Match the pictures a)–d) to the type of d) micrometer measuring error (1)–(4). Explain if it is a Bügelmessschraube – Messtechnik (mea systematic or a random error. suring devices) a) b) 20 °C e) snap gauge Rachenlehre – Lehren (gauges) f) vernier calliper Messschieber – Messtechnik (measuring 40 °C f devices) c) 0 d) 2. Name the correct inspection aid to find out 0.1 0.1 0.2 0.2 these measurements. 0.3 0.3 0.4 a) the diameter of a shaft of 22 mm vernier calliper b) the length of a rail of 1.80 m folding rule Type of measuring error: (1) parallax error c) the angle of 120° (2) wear of measuring surfaces (3) bad po- protractor sitioning of device (4) temperature too high d) the bore of ∅ 20 mm a) – 4 = systematic error vernier calliper b) – 3 = random error e) the depth of 10 mm of a groove c) – 1 = random error vernier calliper d) – 2 = systematic error
8 Measuring technique 2. ake a list of six common measuring devices (e. g. steel rule, vernier calliper, gauge M block, dial gauge protractor, etc.) and find out their type of inspection aid/range/accuracy. (Use a webpage of a company for measuring devices e. g. www.mitutoyo.com; www.mahr.de; www.hoffmann.de). Measuring device Type of inspection aid Measuring Range Accuracy steel rule dimensional represen 150–1000 mm 0.5 / 1 mm tative vernier calliper indicative measuring 150 mm 0.01 / 0.2 mm device protractor indicative measuring 180° 0.1° / 0.5° device micrometer indicative measuring 0–300 mm 0.005 / 0.01 mm device plug limit gauge gauge 0.5 – 500 mm 0.01 mm / 0.02 mm dial indicator indicative measuring 50 μm – 100 μm 0.001 mm device folding meter dimensional represen 2000 mm 0.5 / 1 mm tative 1.3 Length Measuring Instruments Exercises page 10 b) Why do straight edges and engineer’s squares have lapped test blades? 1. Match the correct expression of the fol- Lapped test blades guarantee a high grade lowing measuring devices to the pictures of flatness. Thus they enable the naked eye at the right. to realize different tiny light gaps between 1 the blade and the tested object. These 1 2 3 4 5 6 29 30 a) absolute scale light gaps reveal inaccuracies concerning b) flexible steel rule 2 straightness and flatness of the workpiece. c) tape rule 3 c) What can you check with straight edges? d) folding rule 4 Straight edges are used to check the straightness and flatness of an object`s sur- e) impulse scale 5 faces. a) – 5 d) What is the light gap method? b) – 1 The test blades are laid upon the surface of c) – 2 the object to be tested. If any tiny light gaps d) – 3 between the blade and the tested object are e) – 4 visible, they reveal inaccuracies in the sur- face. 2. Answer the following questions in English. e) Mention 3 different types of gauges and a) What is the difference between measuring choose a certain measurement of a work- instruments and gauges? piece which can be checked by them. Measuring instruments provide a numer- Plug gauge – internal diameter of bores ical value for the quantity, size, weight, Snap gauge – external diameter of cylindri- distance or capacity of an object, whereas cal objects gauges are geometrical representations of Gauge block – external dimension of any certain dimensions or forms. three-dimensional object.
Micrometer (screw gauge) 9 Exercises page 11 1. Find the correct answer of the questions and tick it in the table below. a) A tolerance is a … clearance between a measurement error variation in shaft/mating bore manufacturing ✓ b) Which of the follow- The Go side is smaller Only slight pressure is The No Go member ing statement of plug than the No Go side of needed to slide the Go is designated with the gauges is true (only 1)? the plug gauge. ✓ member into the bore. minimum limit size. c) Which of the following The Go member should The Go member is The Go member doesn’t statements of snap fail to slide into the bore. marked in red. represent the minimum gauges is true (only 1)? limit size. ✓ 2. Create a stack of gauge blocks and write down the combination of blocks. a) 42.123 mm 1.003 b) 74.357 mm 1.000 c) 81.685 mm 1.005 1.020 1.007 1.080 1.100 1.050 1.600 9.000 1.300 8.000 30.000 70.000 70.000 1.4 Vernier calliper Exercises page 12 2. Translate the example of reading a me- chanical calliper above into German. 1. Some of the following six statements are Bei einer Messung wird als erstes der Null- wrong. Find these statements and correct strich des Nonius als Komma abgelesen. them. Links vom Nullstrich liest man auf der a) A vernier calliper is the least frequently Strichskala die vollen Millimeter ab. used measuring device in the workshop. Nun muss ermittelt werden, welcher der ⇒ Wrong weiter rechts stehenden Striche der unte A vernier calliper is the most frequently ren Skala mit einem der oberen Skala used measuring device in the workshop. übereinstimmt – dieser gibt den Zehntel millimeterwert an. Das Addieren der bei b) A calliper can measure diameters of bores den Werte ergibt das zu ermittelnde Maß. and shafts, the width and thickness of a part. ⇒ Correct 1.5 Micrometer (screw gauge) c) There are three different types of callipers: Exercises page 13 manual, digital and CNC callipers. ⇒ Wrong 1. Label the sketch of the mechanical mi- There are two different types of callipers: crometer a) to I) by reading the text above. manual and digital. a) b) d) e) f) d) With the aid of a 1/20 nonius a measuring of 0.02 mm is possible. ⇒ Wrong 35 0 5 10 With the aid of a 1/20 nonius an accuracy of 30 c) 0.05 mm is possible. i) h) e) Measurements of 0.001 inch, 0.01, 0.02 and j) g) 0.05 mm are also possible. ⇒ Correct l) k) f) Digital callipers are easier to read, cheaper and more often used nowadays. a) measuring faces b) lock ⇒ Wrong Digital callipers are easier to read and more c) anvil d) spindle often used nowadays, but not cheaper. e) screw f) spring
10 Measuring technique g) ratchet h) rotary thimble 2. Answer the questions in English. i) main scale and auxiliary scale a) Which surface testing instrument is very quick and easy to use? Why? j) sleeve k) frame Surface roughness comparators, because l) insulation plate they can be used during the manufacturing process, without having to place the work- 2. Read the correct measurements of the mi- piece in a measuring apparatus. crometers shown below. b) Explain why you can compare the surface 20 roughness visually and by touching. 0 1 2 Because both methods make roughness a) in inch 15 comprehensible through senses. c) Describe how a stylus instrument works. 40 35 Stylus instruments are surface roughness b) in mm 55 60 65 30 testers, which record the peaks and val- 25 leys by a diamond stylus. It is drawn at a 20 constant speed across the workpiece. The 0 1 c) in inch amount to which the stylus is raised or low- 15 ered is printed in a diagram. It shows the increased surface profile. a) 0.267 inch Exercises page 15 b) 65.34 mm c) 0.192 inch 1. Answer the questions in English. a) Which surface texture parameters are often 1.6 Surface testing used in USA and which in Germany? The surface parameter Rz is widely used in Exercises page 14 Europe, Ra is the most specified U.S. pa- rameter. 1. Complete the missing information about form deviations in the table. b) Explain the difference between the surface parameter Rmax and Rz. Degrees of Examples Possible cause Rz considers the five highest peaks and the form devia- five deepest valleys. The complete evalua- tion tion length is divided into five cut-offs. In 1st degree: straightness Clamping marks, each of these the highest distance between form devia- or round- wear in the peak and valley is a value (Rz1–5). Rmax re tion ness, other guides of the presents the maximum height of the five than the re- machine tool values in the sampling length. quired form 2nd degree: waves Vibrations of c) Why is the surface texture parameter Rmax waviness machine tool not a very reliable value? 3rd degree: grooves Geometry of the Because it represents only an extreme and roughness cutting tool, feed not the average surface texture. This means or depth of cut one scratch could give a false impression of the tool dur- about the surface quality. ing fabrication of the part d) Explain the surface texture parameter Ra. 4th degree: scoring, Sequence of chip Ra (arithmetic average roughness) consid- roughness scales, formation, sur- ers all peaks and valleys of the roughness bumps face deformation profile. Thus, extremes are neutralised and during fabrica- have no significant influence on the final re- tion of the part sult.
Fit Systems 11 2. Name the type of surface parameters and its value of the positions (1) to (4) shown in the figure. (1) Rz = 2.8 μm (average peak to valley height) 2 Ra 4.0 3 (2) Ra = 4.0 μm (arithmetic average roughness) Rz 2.8 Rz 6.5 (3) Rz = 6.5 μm (average peak to valley height) (4) Rz = 4.0 μm (average peak to valley height) 1 Rz 4.0 4 3. Copy a roughness profile from your own test or from a book and add the three parameters: Rmax, Rz1–z5 and Ra. Rz1 Rz2 Rz3 Rz5 Rz4 Ra Rmax single evaluation length r 1.7 Fits Exercises page 16 2. Find the correct expressions and match them to the abbreviation. 1. Answer the following questions in English. a) FImin/FImax – minimum interference/maxi- a) What is a fit? mum interference A fit is the dimensional relationship of two b) GIH/GUH – h ole minimum dimension/ mating construction components. hole maximum dimension b) Which two criteria are given to select the c) TH/TS – hole tolerance/shaft tolerance type of fit? The choice of the different fit is determined d) GIS/GUS – s haft minimum dimension/ either by the use or by the production of the shaft maximum dimension parts. e) FCmin/FCmax – m inimum clearance/maximum c) What are the dimensions of the hole and clearance shaft, when a clearance fit is given? The lower limit size of the hole is greater or 1.8 Fit Systems at least equal to the upper limit size of the shaft. Exercises page 17 d) Which three types of fits are possible? 1. Answer the questions in German. Explain! Clearance fit always enables some space a) Which difference do the basic hole system between the hole and shaft. The lower limit and the basic shaft system have? size of the hole is greater or at least equal to Beim System Einheitsbohrung wird die the upper limit size of the shaft. maximale Abweichung vom Nennmaß der Interference fit always has some excess ma- Bohrung festgelegt. Die gewünschte Pas- terial between the hole and shaft. The up- sung wird durch Auswahl einer Welle mit per limit size of the hole is smaller or at least entsprechender Toleranz erreicht. equal to the lower limit size of the shaft. Beim System Einheitswelle wird die maxi- Transition fit is a fit where both types of fit male Abweichung vom Nennmaß der Welle may occur. The tolerance zones of the hole festgelegt. Die gewünschte Passung wird and shaft partly or completely interfere. durch Auswahl einer Bohrung mit entspre- There can be a clearance fit or an interfer- chender Toleranz erreicht. ence fit.
12 Measuring technique b) Where is the basic hole system used? b) Calculate the maximum and minimum Das System Einheitsbohrung wird haupt clearance or interference, by using your sächlich im Maschinenbau und in dem Metal Trade Handbook. Fahrzeugbau verwendet. a) c) Which letters are used in the basic hole sys- hole limits: tem for interference fits? max. = 8.036 mm; min. = 8.000 mm H/n or p…z shaft limits: max. = 8.000 mm – d9 2. Determine the type of fit of the following = 8.000 mm – 0.040 mm = 7.960 mm fits: min. = 7.960 mm – 0.036 mm = 7.924 mm Maximum clearance a) 8H9/d9 – clearance fit = max. hole – min. shaft b) 24H7/s6 – interference fit = 8.036 mm – 7.924 mm = 0.112 mm c) 9K7/h6 – transition fit Minimum clearance = min. hole – max. shaft d) 153 H11/c11 – clearance fit = 8.000 mm – 7.960 mm = 0.040 mm b) 3. hole limits: a) Read the required values for the fit of max. = 24.021 mm; min. = 24.000 mm Nr. 2 a) to d) from a Metal Trades Handbook. shaft limits: a) max. = 24.048 mm; min. = 24.035 mm 8H9: 8.000 mm + IT9 = 8.000 mm Maximum clearance + 0.036 mm = 8.036 mm = max. hole – min. shaft 8d9: 8.000 mm – 0.040 mm = 7.960 mm = 24.021 mm – 24.035 mm = – 0.014 mm (upper specification limit) Minimum clearance 7.960 mm – 0.036 mm (IT9) = 7.924 mm = min. hole – max. shaft (lower specification limit) = 24.000 mm – 24.048 mm = – 0.048 mm b) c) 24H7: 24.000 mm + IT7 = 24.000 mm hole limits: + 0.021 mm = 24.021 mm max. = 9.005 mm; min. = 8.990 mm 24s6: 24.000 mm + 0.048 mm = 24.048 (upper shaft limits: specification limit) max. = 9.000 mm; min. = 8.991 mm 24.048 mm – 0.013 mm = 24.035 mm Maximum clearance (lower specification limit) = max. hole + min. shaft c) = 9.005 mm – 8.991 mm = 0.014 mm 9K7: 9.000 mm + K-value (table) Minimum clearance = 9.000 mm + 0.005 mm = 9.005 mm = min. hole + max. shaft (lower specification limit) = 8.990 mm – 9.000 mm = – 0.010 mm 9.005 mm + IT7 = 9.005 mm – 0.015 mm d) = 8.990 mm (lower specification limit) hole limits: 9h6: 9.000 mm (upper specification limit) max. = 153.250 mm; min. = 153.000 mm 9.000 mm + IT6 = 9.000 mm – 0.009 mm shaft limits: = 8.991 mm (upper specification limit) max. = 152.790 mm; min. = 152.540 mm d) Maximum clearance 153H11: 153.000 mm (lower specification limit) = max. hole – min. shaft 153.000 mm + IT11 = 153.000 mm = 153.250 mm – 152.540 mm = 0.710 mm + 0.250 mm = 153.250 mm Minimum clearance (upper specification limit) = min. hole – max. shaft 153c11: 153.000 mm – 0.210 mm = 153.000 mm – 152.790 mm = 0.210 mm = 152.790 mm (upper specification limit) 152.790 mm – IT11 = 152.790 mm – 0.250 mm = 152.540 mm (lower specification limit)
Test unit for Measuring technique Fit Systems Übungseinheit zur Messtechnik 13 You are an exchange student in Manchester, Inspection plan Key Fob Great Britain, and work at a metal processing Identification number: 18012 Drawing number: 24108 company for three weeks. Your instructor has Designation: bracket Inspection plan no.: 82 given you a demonstration copy of a key fob and Serial Inspection Tolerance Measuring forwarded you the order to produce one of it. No. characteristic (GTm) instrument 1 length l1 = 50 mm ? ? 2 diameter bracket ? ? d = 8 mm 3 external diameter ? ? dex = 48 mm 4 length l2 = 65 mm ? ? 5 metric thread M8 ? ? 6 depth of metric thread ? ? You have milled and drilled the steel blocks and dmt = 20 mm you have bent the brackets. So all of the parts are on your workbench in front of you. 2. Your are back in your training workshop and present your manufactured key fob. Your in- structor would like to display this key fob on the special event of the open house. Therefore he asked you to translate the in- spection plan of the steel block and the bracket into German. Here is the beginning. Translate it completely. Steel block Bracket Prüfplan des Schlüsselanhängers xx: xx: 1. In order to check all relevant dimensions and xx: xx: to test if all parts can be assembled you have Ldf. xx xx xx to make an inspection plan of the steel block Nr. (part 1) and the bracket (part 2). 1 Länge l1 = 50 mm ? ? 2 … ? ? The tolerances are according to General tole rances, class m. (Use the Metal Trades Hand- book for looking up the tolerances) 3. Now check your knowledge about measuring techniques and equipments with the cross- Inspection plan Key Fob word puzzle below. Identification number: 18012 Drawing number: 24107 Designation: steel block Inspection plan no.: 81 1 2 Serial Inspection Tolerance Measuring 3 No. characteristic (GTm) instrument 4 5 1 length l1 = 65 mm ? ? 2 width w1 = 12 mm ? ? 6 7 3 height h1 = 40 mm ? ? 4 groove, ? ? 8 lenght l2 = 50 mm 5 groove, ? ? 9 height h1 = 8 mm 6 internal diameter ? ? groove d1 = 16 mm ACROSS DOWN 7 diameter hole2 ? ? 3 A general measuring device 1 If you have an incorrect eye d2 = 8.1 mm used to find out smaller position when reading the distances and measure scale, these errors can occur 8 depth of hole2 workpieces 2 The right instrument for very ? ? dh2 = 12 mm 6 A prefix for units for a multiple accurate measurements of thousand 4 A relationship between a bore 9 distance from 7 With this instrument you can and a matching shaft is called: center of holes ? ? record the roughness of a 5 The measuring devices surface represent certain dimensions dh1/h2 = 40 mm 8 The most commonly used unit or geometric forms e.g. radii for electric current 10 diameter hole3 7 Number of base quantities in ? ? 9 The common unit for a force technology d3 = 8.1 mm
14 Quality management 2 Quality management 2.1 Basics of quality management d) Which different stages appear in a product circle? Exercises page 18 Construction, development – Production planning – Quality planning – Inspection 1. Working with words. Which words from e.g. supplied parts – Quality control – Qual- the text are described here? ity improvement – Production – Assembly – a) If the product looks really good, the design Product – Final testing – Delivery is very appealing. 2.2 Quality tools b) If the device runs without a problem for a long time, it is very reliable. Exercises page 19 c) If the product can be used in many different ways, the performance is very high. 1. Answer the questions: a) Which two type of graphs are used in a Pa- 2. Translate the definition of quantitative and reto chart? qualitative characteristics. Bars and a line. The bars indicate the type Quantitative Merkmale sind messbar oder and the frequency of the defects. The line können gezählt werden, beispielsweise die displays the cumulative total of the errors. Länge eines Werkstücks oder der Durch- b) Why is the Ishikawa diagram also called messer einer Welle. fishbone diagram? Qualitative Merkmale beschreiben eine Because both terms name the same kind of Beschaffenheit, wie beispielsweise die diagram – a cause-and-effect diagram. Qualität der Lackierung eines Fahrzeugs. The fishbone represents the skeleton (cause) of the 6 effects. 3. Answer the following questions in English. c) What is meant by the 6 Ms? a) Which 3 quality characteristics (= require- manpower, machine, method, material, mi- ments of the customer) should your next lieu, measurement smart phone have? It should have an appealing design, good d) Which function has a tally sheet? performance, diverse functions and be very A tally sheet is used to summarize data in reliable. order to draw a histogram. b) Which system supports the quality process e) What is shown in a histogram? in companies? A histogram shows the distribution of A quality management system according to measured results. It indicates the frequen- ISO 9000 standards. cy of data within a range of values, called a class. c) What does the 1-10-100 rule describe? The 1-10-100 rule states that when a product f) What does the height of a bar in a histo- moves through a production sequence, the gram show? cost of correcting an error multiplies by 10 The height of a bar in a histogram indicates from stage to stage. the frequency of the data that falls in each class.
Normal distribution 15 2. Draw a histogram on an extra sheet of paper by using the data below. Length of the shaft in mm Measured 14.990 14.995 15.000 15.005 15.010 15.015 15.020 15.025 15.030 15.035 values Frequency nj 2 5 10 13 15 16 13 9 6 3 18 16 14 12 10 Frequency n j 8 6 4 2 0 14.990 14.995 15.000 15.005 15.010 15.015 15.020 15.025 15.030 15.035 Length of the shaft in mm 2.3 Normal distribution Exercises page 20 ihre Verteilung auf die Fächer im unteren Teil des Apparats überprüft. 1. Give three examples of nature or techno c) Experimental result logy in which data can be normally distri buted. Die unterschiedlichen Höhen der Säulen bilden in allen Fällen eine Kurve in der Form • Intelligence of humans einer Glocke. Diese wird Glockenkurve, • Body height of people Gaußsche Verteilungskurve oder Normal- • Deviations from the diameter of turned verteilungskurve genannt. shafts. 3. Translate the sentences according the nor- 2. Explain the experimental principle of a mal distribution into English: Galton board in German. Use the following a) Die Normalverteilung entsteht, wenn viele structure: zufallsbedingte Einflüsse wirksam sind. a) Construction of the board A normal distribution occurs when many Das Galton-Brett besteht aus einer verti- random influences are effective. kalen Fläche, auf der Stiftreihen in gestaf- b) Sie zeigt eine typische Glockenkurve der felter Reihenfolge so angeordnet sind, dass _ Häufigkeit über dem Merkmal x . herunterfallende Kugeln nach links oder It shows a typical bell-shaped _ curve of fre- rechts daran abprallen können. Die Vorder- quency around the mean x . seite des Geräts besteht aus Glas, damit _ der Weg der Kugeln beobachtet werden c) Der Mittelwert x liegt beim Kurvenmaxi- kann. Unterhalb der Hindernisse werden mum und zeigt die Lage der Verteilung. _ die Kugeln in Fächern aufgefangen. The mean x is located at the peak of the b) ExperimentaI procedure curve and shows the position of the distri- bution. Eine Anzahl Kugeln wird auf die Hinder nisreihen fallen gelassen und anschließend
16 Quality management d) Die Standardabweichung kennzeichnet die 2.5 Machine capability Streuung, d. h. die Verteilung um den Mit- telwert. Exercises page 22 The standard deviation indicates the varia- tion, i. e. the distribution around the mean 1. Translate the following sentences into value. English: a) Maschinenfähigkeitsuntersuchungen (MFU) 2.4 Statistical characteristics of data werden vor dem Einsatz von Maschinen, bei quantities Maschinenabnahme sowie nach umfang reichen Wartungsarbeiten und Reparaturen Exercises page 21 eingesetzt. Machine capability tests (MCT) are applied 1. Translate the definition in German of before machine use, during machine ac- a) the arithmetic mean ceptance and after extensive maintenance _ and repairs. Der arithmetische Mittelwert x einer Reihe von Daten wird als Summe der einzelnen b) Die MFU wird über einen längeren Zeitraum Daten geteilt durch die Anzahl der Daten durchgeführt. errechnet. The MCT is applied over a longer period of b) the median time. ~ ist der mittlere Wert ei Der Medianwert x c) Bei der MFU werden in einem Vorlauf zur ner Datenreihe, die in aufsteigender Rei- Fertigung mindestens 25 Teile gefertigt und henfolge sortiert ist. Bei ungerader Anzahl ihre Maße geprüft. von Daten ist er identisch mit dem Wert, During an MCT, at least 25 parts are manu der in der Mitte der Sequenz liegt. factured in a lead-up to production and c) the range their dimensions are checked. Die Spannweite R bezeichnet die Differenz d) Der Mittelwert, die Spannweite und Tole zwischen dem höchsten (xmax) und dem ranz sind wichtige Werte zur Auswertung niedrigsten Einzelwert (xmin). der MFU. The mean value, the range and the tole 2. Your company inspects the d iameter rance are important values for the evalua- of produced shafts. The nominal value tion of the MCT. = 19+/– 0.001 mm. The result of a sampling e) Zur Auswertung der MFU werden die ge- test is presented in the following table: messenen Maße der gefertigten Teile als Diameter of shafts Normalverteilungskurve in ein Koordina _ tensystem gezeichnet und der Mittelwert x , Measured value in mm Number of values die Spannweite R, die Standardabweichung 18.999 3 s und die Toleranz T eingetragen. 19.000 6 To evaluate the MCT, the measured dimen- 19.001 8 sions of the manufactured parts are drawn 19.002 5 as a normal distribution curve into a_coor- dinate system and the mean value x , the 19.003 2 range R, the standard deviation s and the 19.998 4 tolerance T are marked. Calculate the following values by using an 2. In the sentences of exercise 1 are three electronic calculator: wrong statements. Find and correct them. _ a) the mean value x _ The wrong statements and corrections are: x = 19.143 mm b) The MCT is a short term study. b) the range R c) During an MCT at least 50 parts are R = 0.999 mm manufactured in a test run. c) the standard deviation s e) The range R is not marked in the coordi- s = 0.030 mm nate system of an MCT. d) ~ the median x ~ = 0.126 mm x
Statistical process control with quality control chart 17 2.6 Process capability The mean diameter from each sampling lot can be taken out of the table below: Exercises page 23 sampling lot mean diameter 1. Find the missing word from the text above: 1 30.01 2 30.02 a) The “C” in the process capability indexes Cp and Cpk stands for capability. 3 29.08 4 30.00 b) The process capability is carried out within a long-term period. 5 29.08 6 29.09 c) The difference between the upper limit val- ue (ULV) and the lower limit value (LLV) is 7 30.01 called the tolerance. 8 30.02 9 30.01 d) If parts are produced in the required quality without faulty ones in a long term the pro- 10 30.00 cess is consistent. 11 29.09 e) The process capability Cp doesn’t consider 12 29.09 if the curve is off-centre. a) Draw a mean chart (see figure in text above) and label the different axis and limits. 2. Explain, why the curve (4) in the figure above is capable but not consistent. Because it reaches outside of the tolerance 30.6 limits. 30.4 UWL UCL 30.2 USL 30.0 2.7 Statistical process control with 29.8 29.6 LSL LCL quality control chart 29.4 29.2 LWL 29.0 28.8 Exercises page 24 28.6 2 sa ling 10 g 1 t1 1 sa ling 1 sa ling 2 sa ling 3 sa ling 4 sa ling 5 sa ling 6 sa ling 7 sa ling 8 sa ling 9 p lot pl lot p lot p lot p lot p lot p lot p lot p lot p lot 1. Translate the purpose of using control p lot lo sa ling in charts in series production into German. p m m m m m m m m m m m m sa Mit der Darstellung von Messwerten in einer Qualitätsregelkarte kann beurteilt werden, ob der Fertigungsprozess stabil b) Add the measured values of the table into oder instabil ist und die Produkte die Spezi- the chart and connect them by lines. fikationen im Rahmen der Toleranzen erfül- len. 2. Your company produces shafts at a CNC 30.6 UWL turning machine. The diameter of the shaft 30.4 30.2 UCL USL can be taken out of the technical drawing: 30.0 29.8 LSL 30 ± 0.05 mm. Besides you have the fol- 29.6 LCL LWL lowing limits given below: 29.4 29.2 Upper control limit: 29.07 mm 29.0 28.8 Upper warning limit: 29.08 mm 28.6 2 sa ling 10 g 1 Lower control limit: 30.03 mm t1 1 sa ling 1 sa ling 2 sa ling 3 sa ling 4 sa ling 5 sa ling 6 sa ling 7 sa ling 8 sa ling 9 p lot pl lot p lot p lot p lot p lot p lot p lot p lot p lot p lot lo g Lower warning limit: 30.02 mm in in pl m m m m m m m m m m m m sa sa
18 Quality management _ Exercises page 25 x – s-charts exhibits more sensitivity than the x ~ 1. Answer the following questions in English. _ –R-charts. x – s-charts are more complex to calculate a) Why are two-track charts, showing two and therefore used for computer-aided con- different statistical values, used in control trol chart management. charts? They provide two aids to describe the same 2. Explain three typical courses in control process. This increases the chance to check charts in German by using the information if the process is out of control or to mark in the table above. the causes of variations. Run: 7 oder mehr aufeinander folgende b) ~ – R-chart and when When do you use a x Werte liegen auf einer Seite der Mittellinie. _ are x –s-charts used? Explain! Trend: 7 oder mehr aufeinander folgende ~ x –R-charts are used in many industries to Werte zeigen eine steigende oder fallende examine the stability of processes and can Tendenz. be used for manual control chart manage- ment. Middle Third: Mindestens 15 Werte liegen aufeinander folgend innerhalb ± Standard- abweichung s.
Test unit for Quality management Statistical process control with quality control chart Übungseinheit zur Qualitätssicherung 19 1. 10-minutes quiz to check your knowledge e) Which quality tools are used in industry? about quality management! a) What is meant by the expression "quality"? f) Explain Pareto´s principle! b) Why is quality management essential for com- panies? g) What is the content of a tally sheet? c) In which areas of a company is quality man- agement necessary? Mention 3 different ones h) What can you do with it? and explain. i) What is the name of a common bar chart showing the frequency of data within a certain d) What is the 1-10-100 rule? Explain. range? j) Which values can be calculated from this chart? 2. Your company Metallix produces shafts for E-bikes by turning. You recieve a raw data list of a sam- ple of 56 different measurements of the nominal length of the shaft l = 56 mm +/–0.2 mm. Measured value no. Measured values in mm 1…10 39.89 40.03 40.10 40.02 40.09 39.97 40.04 39.99 39.98 40.10 11…20 40.00 39.99 40.00 40.04 40.00 40.01 40.02 40.01 40.03 40.07 21…30 40.02 40.02 40.07 40.02 40.02 40.14 40.07 40.03 40.03 39.94 31…40 40.03 40.06 40.03 40.04 40.07 40.04 40.04 40.00 40.04 40.05 41…50 40.05 40.05 40.06 40.05 40.06 40.05 39.96 40.06 40.03 40.03 51…56 40.07 40.03 40.08 40.08 40.10 40.02 Calculate the statistical characteristics of the Evaluation form data series and draw a histogram according evaluation: sample: part no: 1234567 measuring charac- scope: teristics: inspected dimension: measuring device: digital micrometer responsible employee: date: to the calculation scheme of the adjacent n = 56 length l 40 ± 0,2 mm LR form. Measured value no. Measured values in mm 1…10 39.89 40.03 40.10 40.02 40.09 39.97 40.04 39.99 39.98 40.10 a) Enlarge the page on the right to DIN A4 size. 11…20 21…30 40.00 40.02 39.99 40.02 40.00 40.07 40.04 40.02 40.00 40.02 40.01 40.14 40.02 40.07 40.01 40.03 40.03 40.03 40.07 39.94 To do this, use the print function in the top line 31…40 41…50 40.03 40.05 40.06 40.05 40.03 40.06 40.04 40.05 40.07 40.06 40.04 40.05 40.04 39.96 40.00 40.06 40.04 40.03 40.05 40.03 of the computer keyboard, for example. 51…56 40.07 40.03 40.08 40.08 40.10 40.02 b) Calculate the statistical parameters using the Data and calculations Creating a histogram: Calculations nominal value N = __ nc k = √n ; b = __ R ; x = __ formulas given and enter them in the calcula- upper shaft tolerance lower shaft tolerance Ao = Au = k W number of classes: k ≈ n rounded: tion scheme. tolerance shaft maximal dimension T = GUS = class interval: frequency of a b ≈ xw rounded: shaft minimum dimension GIS = class interval: c) Calculate the characteristic values for creating centre of tolerance M = nj Tally sheet hj = __ n a histogram. Statistical characteristics class measured value tally list nj hj number of measured values n = no. in % ≥ ≤ d) Create the data collection list (tally sheet). Limit values 1 2 maximum value xmax = 3 e) Draw the histogram in the form. minimum value xmin = 4 5 6 Range of variance R = xmax – xmin 7 8 range R = 9 Median value Histogram ~ = 30 median value x 25 frequency hj 20 Mean value 15 _ x1 + x2 + x3 + … xn x = _________________ n 10 _ 5 mean value x = 0 1 2 3 4 5 6 7 8 9 classes
20 Production engineering 3 Production engineering 3.1 Safety at work Exercises page 26 (3) Fire extinguisher Feuerlöscher → i 1. Translate the descriptions. (4) Warning: Hazardous area Then match it to the signs, e. g. 1 → h. (Use Achtung: Gefahrenbereich → g your Metal Trades Handbook if necessary) (5) No cell phones a) b) c) Keine Mobiltelefone → j (6) Warning: Corrosive substances Achtung: Ätzende Substanzen → e d) e) f) g) (7) Wear face protection Gesichtsschutz tragen → b (8) Pedestrian access prohibited h) i) j) Zutritt für Fußgänger verboten → c (9) No forklifts Keine Gabelstapler/Flurförderfahrzeuge → a (10) Warning: Toxic substances (1) Wear protective gloves Achtung: Giftige Substanzen → d Handschutz benutzen → h (2) Eye rinsing equipment Augenspüleinrichtung → f 2. Complete the table and describe the safety signs. Give one example of each category. Safety sign Geometrical form Colour Meaning Example Mandatory sign round/circular blue/white You must wear the Wear gloves item. Prohibitive sign round/circular red/white/black It is forbidden to… No forklifts Warning sign triangular yellow/black Warning: … Warning: Corrosive substances Escape and rescue square or rectan- green/white Escape route or Eye rinsing equip- sign gular rescue equipment ment
Sie können auch lesen