Lösungsbuch TECHNISCHES ENGLISCH - EUROPA-FACHBUCHREIHE für metalltechnische Berufe

Die Seite wird erstellt Haimo-Haio Schreiner
 
WEITER LESEN
EUROPA-FACHBUCHREIHE
 für metalltechnische Berufe

Lösungsbuch
TECHNISCHES ENGLISCH
zur FACHKUNDE METALL

1. Auflage

VERLAG EUROPA-LEHRMITTEL · Nourney, Vollmer GmbH & Co. KG
Düsselberger Straße 23 · 42781 Haan-Gruiten

Europa-Nr.: 11028
Autoren:
Dr. Eckhard Ignatowitz Dr.-Ing., Dipl.-Ing. StR. a. D. Waldbronn
Christina Murphy Dipl.-Berufspäd. (Univ.) StDin Wolfratshausen
Falko Wieneke Dipl.-Ing. StD Essen

Bei der Übersetzung war behilflich:
Heinz Bernhardt Gymnasiallehrer OStR a. D. Waldbronn
Wolfgang Peter-Michel Overath

Leitung des Arbeitskreises und Lektorat:
Dr. Eckhard Ignatowitz

Bilder und Bildentwürfe:
Ein Teil der Bilder stammen aus dem Buch Fachkunde Metall oder sind auf der Basis dieser Bilder erstellt.
Weitere Bilder wurden von Unternehmen zur Verfügung gestellt, entstammen dem Bilderarchiv des Ver-
lags oder wurden von den Autoren entworfen.
Die Autoren danken den Autoren der Fachkunde Metall, den Unternehmen sowie dem Verlag Europa-
Lehrmittel für die Bereitstellung der Bilder.

Bildbearbeitung:
Zeichenbüro des Verlags Europa-Lehrmittel, Ostfildern

1. Auflage 2021
Druck 5 4 3 2 1

Alle Drucke derselben Auflage sind parallel einsetzbar, da sie bis auf die Korrektur von Druckfehlern
identisch sind.

ISBN 978-3-7585-1102-8

Alle Rechte vorbehalten. Das Werk ist urheberrechtlich geschützt. Jede Verwertung außerhalb der ge-
setzlich geregelten Fälle muss vom Verlag schriftlich genehmigt werden.

© 2021 by Verlag Europa-Lehrmittel, Nourney, Vollmer GmbH & Co. KG, 42781 Haan-Gruiten
www.europa-lehrmittel.de

Satz: Satz+Layout Werkstatt Kluth GmbH, 50374 Erftstadt
Umschlag: Grafische Produktionen Jürgen Neumann, 97222 Rimpar
Umschlagfotos: Sauter Feinmechanik GmbH, 72555 Metzingen, © md3d und © somartin – Fotolia.com
Druck: RCOM Print GmbH, 97222 Rimpar
Vorwort 3

 Vorwort

Dss Lösungsbuch Technisches Englisch für die Fachkunde Metall dient zur Erarbeitung und Überprü-
fung der Exercices (Übungen) im Lehrbuch Technisches Englisch für die Fachkunde Metall.
Es enthält die Fragen bzw. Aufgaben der Exercises aus dem Lehrbuch und die dazu gehörenden Ant-
worten bzw. Lösungen.
Die Antworten/Lösungen sind in Blau gedruckt und heben sich dadurch deutlich von den in Schwarz
gedruckten Fragen/Aufgaben ab.
Die Exercises sind in derselben Reihenfolge und Kapitelnummerierung wie im Lehrbuch Technisches
Englisch für die Fachkunde Metall angeordnet. Eine zusätzliche Seitenangabe lässt die jeweiligen Exer-
cises im Lehrbuch rasch auffinden.
Nach jedem Kapitel bietet das Lösungsbuch eine Seite mit einer Übungseinheit (Test unit) zur Leis-
tungsüberprüfung an.
Die Übungseinheit kann vom Lernenden als selbstgestellte Überprüfung seines Wissensstandes ge-
nutzt werden oder kann vom Lehrer durch Kopieren als Klassensatz zur Leistungsüberprüfung der Klas-
se verwendet werden.
Autorisierte Lehrkräfte können die Lösungen der Übungseinheiten auf der Website des Verlags Europa-
Lehrmittel einsehen. Internetadresse: www.europa-lehrmittel.de
Sollten Sie Verbesserungsvorschläge zum Lösungsbuch haben, so freuen wir uns auf Ihre Zuschrift.
Bitte senden Sie Ihre Hinweise und Vorschläge per E-Mail an: lektorat@europa-lehrmittel.de

Sommer 2021 Die Autoren, der Verlag
4 

 Table of Contents
 Inhaltsverzeichnis

 Answers to the questions in the book TECHNISCHES ENGLISCH zur FACHKUNDE METALL

1 Measuring technique . . . . . . . . . . . . . 6 3 Production engineering . . . . . . . . . . . 20
 Prüftechnik Fertigungstechnik
1.1 Physical quantities and units . . . . . . . . . . 6 3.1 Safety at work . . . . . . . . . . . . . . . . . . . . . . 20
 Physikalische Größen und Einheiten Arbeitssicherheit
1.2 Fundamentals of measuring ­technique . 7 3.2 Prevention of accidents . . . . . . . . . . . . . . 21
 Grundlagen der Messtechnik Vermeidung von Unfällen
1.3 Length Measuring Instruments . . . . . . . . 8 3.3 Overview of manufacturing p ­ rocesses . 21
 Längenmessgeräte Überblick der Herstellungsverfahren
1.4 Vernier calliper . . . . . . . . . . . . . . . . . . . . . . 9 3.4 Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
 Messschieber Gießen
1.5 Micrometer (screw gauge) . . . . . . . . . . . . 9
 3.5 Reforming . . . . . . . . . . . . . . . . . . . . . . . . . . 23
 Bügelmessschraube
 Umformen
1.6 Surface testing . . . . . . . . . . . . . . . . . . . . . . 10
 3.6 Basics of metal-cutting manufacturing . 23
 Oberflächenprüfung
 Grundlagen der spanenden Fertigung
1.7 Fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
 Passungen 3.7 Filing and sawing by hand . . . . . . . . . . . . 24
 Feilen und von Hand sägen
1.8 Fit Systems . . . . . . . . . . . . . . . . . . . . . . . . . 11
 Passungssysteme 3.8 Cutting materials . . . . . . . . . . . . . . . . . . . . 24
 Schneidestoffe
 Test unit for Measuring technique . . . . . 13
 3.9 Cooling lubricants for cutting . . . . . . . . . 25
 Kühlschmierstoffe zum Spanen
2 Quality management . . . . . . . . . . . . . 14
 Qualitätsmanagement 3.10 Drilling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
 Bohren
2.1 Basics of quality management . . . . . . . . 14
 Grundlagen des Qualitätsmanagement 3.11 Tapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
 Gewindebohren
2.2 Quality tools . . . . . . . . . . . . . . . . . . . . . . . . 14
 Qualitätswerkzeuge 3.12 Countersinking (counterboring) . . . . . . . 26
 Senken
2.3 Normal distribution . . . . . . . . . . . . . . . . . . 15
 Normalverteilung 3.13 Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Statistical characteristics of data Drehen
 quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.14 Milling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
 Statistische Kennwerte von Fräsen
 Datenmengen
 3.15 Grinding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Machine capability . . . . . . . . . . . . . . . . . . . 16 Schleifen
 Maschinenfähigkeit
 3.16 Overview of joining technologies . . . . . . 29
2.6 Process capability . . . . . . . . . . . . . . . . . . . 17 Überblick der Verbindungstechniken
 Prozessfähigkeit
 3.17 Welding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 Statistical process control with quality
 Schweißen
 control chart . . . . . . . . . . . . . . . . . . . . . . . . 17
 Statistische Prozessregelung mit 3.18 Assembly technique . . . . . . . . . . . . . . . . . 30
 Qualitätsregelkarten Montagetechnik

 Test unit for Quality management . . . . . 19 Test unit for Production engineering . . . 32
 5

4 Material engineering . . . . . . . . . . . . . 33 5.7 Bearings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
 Werkstofftechnik Lager
4.1 Overview of materials . . . . . . . . . . . . . . . . 33 5.8 Seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
 Überblick der Werkstoffe Dichtungen
4.2 Important properties of materials . . . . . . 34 5.9 Shafts, axles, couplings . . . . . . . . . . . . . . 50
 Wichtige Werkstoffeigenschaften Wellen, Achsen, Kupplungen
4.3 Designation system for steels . . . . . . . . . 34 5.10 Gears . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
 Bezeichnungssystem für Stähle Getriebe
4.4 Steel groups and their applications . . . . 35 5.11 Electric motors . . . . . . . . . . . . . . . . . . . . . . 52
 Stahlgruppen und ihre Anwendungen Elektrische Motoren
4.5 Semi-finished steel products . . . . . . . . . . 36
 Test unit for Mechanical engineering . . . 55
 Stahl-Halbzeuge
4.6 Cast iron materials . . . . . . . . . . . . . . . . . . . 36
 6 Electrical engineering . . . . . . . . . . . . 56
 Gusseisen-Werkstoffe
 Elektrotechnik
4.7 Light metals . . . . . . . . . . . . . . . . . . . . . . . . 37
 6.1 Electrotechnical basics . . . . . . . . . . . . . . . 56
 Leichtmetalle
 Elektrotechnische Grundlagen
4.8 Heavy metals . . . . . . . . . . . . . . . . . . . . . . . 38
 Schwermetalle 6.2 Types of current and electric networks . 57
 Stromarten und elektrische Leitungs-
4.9 Sintered materials . . . . . . . . . . . . . . . . . . . 38 netzwerke
 Sinterwerkstoffe
 6.3 Electric work and electric power . . . . . . . 57
4.10 Heat treatment of steels . . . . . . . . . . . . . . 39 Elektrische Arbeit und elektrische
 Wärmebehandlung der Stähle Leistung
4.11 Corrosion and corrosion protection . . . . 40 6.4 Faults in electrical systems . . . . . . . . . . . 58
 Korrosion und Korrosionsschutz
 Fehler an elektrischen Anlagen
4.12 Plastics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
 6.5 Protection measures . . . . . . . . . . . . . . . . . 58
 Kunststoffe
 Schutzmaßnahmen
 Test unit for Material engineering . . . . . . 42
 Test unit for Electrical engineering . . . . . 59

5 Mechanical engineering . . . . . . . . . . 43
 Maschinentechnik
 7 Technical communication . . . . . . . . 60
 Technische Kommunikation
5.1 Classification of machines . . . . . . . . . . . . 43
 Einteilung der Maschinen 7.1 Technical drawings . . . . . . . . . . . . . . . . . . 60
 Technische Zeichnungen
5.2 Functional units of machines . . . . . . . . . . 43
 Funktionseinheiten der Maschine 7.2 Presentation of technical relationships . 61
 Darstellung technischer
 5.3 Screw connections . . . . . . . . . . . . . . . . . . 44 Zusammenhänge
 5.4 Schraubenverbindungen . . . . . . . . . . . . . 44
 5.5 Shaft-hub connections . . . . . . . . . . . . . . . 46 Test unit for Technical communication . 63
 Welle-Nabe-Verbindungen
5.6 Friction and lubricants . . . . . . . . . . . . . . . 47 8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 64
 Reibung und Schmierstoffe Anhang
6 Measuring technique

 1 Measuring technique

1.1 Physical quantities and units b) velocity v
 v = s : t; Velocity v is defined as the dis-
 Exercises page 6 tance s divided by time t. The SI unit for ve-
 locity is meter per second (m/s), defined as
1. Working with words. Which words from a distance measured in meter which is co­
 the text are described here? vered in the duration of one second.
a) Every material has certain physical quanti- c) density ϱ
 ties, for example it has a special density. ϱ = m : V; Density ϱ is defined as mass
b) In order to find out the correct diameter of a m per volume V. The SI unit for d
 ­ ensity is
 workpiece, you need to measure it with an kilogram per cubic meter (kg/m3), ­defined
 instrument. as a mass m measured in kilograms per vo­
 lume V in cubic meters.
c) The speed of a car is also called velocity.
 d) tension 
2. Define physical quantities in German by σ = F : S; Tension σ is defined as a force
 using the information from the text above. F acting on a defined cross section S of a
 specimen in order to elongate him. The unit
 Die an einem Objekt (z. B. bei einem be­ for tension in engineering is Newton per
 stimmten Werkstoff) messbaren Eigen- Millimeter N/mm2.
 schaften, Vorgänge oder Zustände werden
 physikalische Größen genannt. e) electrical energy W
 W = P ∙ t; Electrical energy W is defined
 as the electrical power P multiplied by the
3. Answer the following questions in English.
 time t. The SI unit for electrical energy is
a) Which two elements does a physical quan- Watt (W), defined as the power which gives
 tity have? Find an example to explain it. rise to energy of one Joule in one second.
 It consists of a numerical value and a unit.
 f) frequency f
 For example: A workpiece has a length l of
 f = 1 : T; Frequency f represents the num-
 330 mm:
 ber of occurrences of a repeating event per
 330 represents the numerical value and peroid time T. The SI unit for frequency is
 mm the unit. Hertz (Hz), defined as the rate of repetition
b) Which 7 base quantities does the Interna- per duration of one second.
 tional System of Units SI define?
 The 7 base quantities defined by the Interna- 2. Convert the measurements from imperial
 tional System of Units SI are length, mass, units into metric units. (Use your Hand-
 time, electric current, temperature, amount book)
 of substance and luminous intensity. a) 120 miles in km
c) What is the difference between base quan- 120 ∙ 1.609 km = 193.08 km
 tities and derived quantities?
 b) 3.300 ft in metres
 The base quantities cannot be transferred
 3.300 ∙ 0.3048 m = 1.00584 m
 into another quantity, whereas the derived
 quantities can always be transferred back c) 1 ½ pints in litres
 into the base quantities. 1.5 ∙ 0.5683 l = 0.8525 l
 d) 4.5 ounces in kilogram
 Exercises page 7 4.5 ∙ 0.02835 kg = 0.1276 kg
1. Write down the formula and explain the e) 1/8 inch in mm
 correct derived units. (Use your Metal 0.125 ∙ 25.4 mm = 3.175 mm
 Trades Handbook) f) 22.5 pounds in kg
a) pressure p 22.5 ∙ 0.4536 kg = 10.2060 kg
 p = F : a; Pressure p is defined as the
 ­effect of a force F applied to a surface a.
 The SI unit of pressure is Pascal (Pa), defined
 as a force of one Newton per square meter.
Fundamentals of measuring ­technique 7

3. Calculate the physical quantities by using f) the radius R5
 SI-Units. radius gauge
a) A compact disc (CD) has a diameter of
 120 mm. Calculate the area in mm2. 3. Answer the questions in English.
 A = π ∙ r 2; a) What are dimensional representatives?
 ACD = π ∙ (60 mm)2 = 11309.724 mm2 Dimensional representatives are measur-
b) The volume of a steel rod is 0.50 dm3 and ing devices allowing certain dimensions to
 has a density of 7.85 kg/dm3. Calculate the be compared with a measuring scale.
 mass in kg. b) Which result do you get when you use a
 m = ϱ ∙ V; gauge? Give an example.
 mrod = 7.85 kg/dm3 ∙ 0.50 dm3 = 3.925 kg A gauge is used to check whether a dimen-
 sion corresponds to the given standard. For
c) A turning tool moves 9.3 cm in a time of
 example a plug limit gauge can be used to
 3 seconds. Calculate the feed velocity in
 check whether the diameter of a hole is with-
 mm/s.
 in specified limits and therefore accurate.
 v = m : t; vftool = 93 mm : 3 s = 31 mm/s
 c) Which result do you get when you use an
1.2 Fundamentals of measuring indicative measuring device? Give an ex-
 ample.
 ­technique
 With an indicative measuring device, a nu-
 Exercises page 8 merical result is achieved. For example, when
 a shaft is measured with a vernier calliper.
1. Translate the following inspection aids and d) When do you need an auxiliary aid? Give an
 name the main group of these devices. example.
a) plug limit gauge Auxiliary aids are used to fix objects in
 Grenzlehrdorn – Lehren (gauges) order to be able to measure them using
 measuring tools. For example to fix a shaft
b) prism block
 in a prism block and finally check it with a
 Prisma – Hilfsmittel (auxiliary aids) dial indicator.
c) folding rule
 Gliedermaßstab – Messtechnik (measuring Exercises page 9
 devices)
 1. Match the pictures a)–d) to the type of
d) micrometer measuring error (1)–(4). Explain if it is a
 Bügelmessschraube – Messtechnik (mea­ systematic or a random error.
 suring devices)
 a) b)
 20 °C
e) snap gauge
 Rachenlehre – Lehren (gauges)
f) vernier calliper
 Messschieber – Messtechnik (measuring 40 °C f
 devices)
 c) 0
 d)
2. Name the correct inspection aid to find out
 0.1 0.1
 0.2 0.2

 these measurements.
 0.3 0.3
 0.4

a) the diameter of a shaft of 22 mm
 vernier calliper
b) the length of a rail of 1.80 m
 folding rule
 Type of measuring error: (1) parallax error
c) the angle of 120° (2) wear of measuring surfaces (3) bad po-
 protractor sitioning of device (4) temperature too high
d) the bore of ∅ 20 mm a) – 4 = systematic error
 vernier calliper b) – 3 = random error
e) the depth of 10 mm of a groove c) – 1 = random error
 vernier calliper d) – 2 = systematic error
8 Measuring technique

2.  ake a list of six common measuring devices (e. g. steel rule, vernier calliper, gauge
 M
 block, dial gauge protractor, etc.) and find out their type of inspection aid/range/accuracy.
 (Use a webpage of a company for measuring devices e. g. www.mitutoyo.com; www.mahr.de;
 www.hoffmann.de).

 Measuring device Type of inspection aid Measuring Range Accuracy
 steel rule dimensional represen­ 150–1000 mm 0.5 / 1 mm
 tative
 vernier calliper indicative measuring 150 mm 0.01 / 0.2 mm
 device
 protractor indicative measuring 180° 0.1° / 0.5°
 device
 micrometer indicative measuring 0–300 mm 0.005 / 0.01 mm
 device
 plug limit gauge gauge 0.5 – 500 mm 0.01 mm / 0.02 mm
 dial indicator indicative measuring 50 μm – 100 μm 0.001 mm
 device
 folding meter dimensional represen­ 2000 mm 0.5 / 1 mm
 tative

1.3 Length Measuring Instruments
 Exercises page 10 b) Why do straight edges and engineer’s
 squares have lapped test blades?
1. Match the correct expression of the fol- Lapped test blades guarantee a high grade
 lowing measuring devices to the pictures of flatness. Thus they enable the naked eye
 at the right. to realize different tiny light gaps between
 1 the blade and the tested object. These
 1 2 3 4 5 6 29 30

a) absolute scale
 light gaps reveal inaccuracies concerning
b) flexible steel rule 2
 straightness and flatness of the workpiece.
c) tape rule 3 c) What can you check with straight edges?
d) folding rule 4 Straight edges are used to check the
 straightness and flatness of an object`s sur-
e) impulse scale 5 faces.
 a) – 5 d) What is the light gap method?
 b) – 1 The test blades are laid upon the surface of
 c) – 2 the object to be tested. If any tiny light gaps
 d) – 3 between the blade and the tested object are
 e) – 4 visible, they reveal inaccuracies in the sur-
 face.
2. Answer the following questions in English. e) Mention 3 different types of gauges and
a) What is the difference between measuring choose a certain measurement of a work-
 instruments and gauges? piece which can be checked by them.
 Measuring instruments provide a numer- Plug gauge – internal diameter of bores
 ical value for the quantity, size, weight, Snap gauge – external diameter of cylindri-
 distance or capacity of an object, whereas cal objects
 gauges are geometrical representations of Gauge block – external dimension of any
 certain dimensions or forms. three-dimensional object.
Micrometer (screw gauge) 9

 Exercises page 11

1. Find the correct answer of the questions and tick it in the table below.

 a) A tolerance is a … clearance between a measurement error variation in
 shaft/mating bore manufacturing ✓
 b) Which of the follow- The Go side is smaller Only slight pressure is The No Go member
 ing statement of plug than the No Go side of needed to slide the Go is designated with the
 gauges is true (only 1)? the plug gauge. ✓ member into the bore. minimum limit size.
 c) Which of the following The Go member should The Go member is The Go member doesn’t
 statements of snap fail to slide into the bore. marked in red. represent the minimum
 gauges is true (only 1)? limit size. ✓

2. Create a stack of gauge blocks and write down the combination of blocks.
 a) 42.123 mm 1.003 b) 74.357 mm 1.000 c) 81.685 mm 1.005
 1.020 1.007 1.080
 1.100 1.050 1.600
 9.000 1.300 8.000
 30.000 70.000 70.000

1.4 Vernier calliper
 Exercises page 12 2. Translate the example of reading a me-
 chanical calliper above into German.
1. Some of the following six statements are
 Bei einer Messung wird als erstes der Null-
 wrong. Find these statements and correct
 strich des Nonius als Komma abgelesen.
 them.
 Links vom Nullstrich liest man auf der
a) A vernier calliper is the least frequently Strichskala die vollen Millimeter ab.
 used measuring device in the workshop. Nun muss ermittelt werden, welcher der
 ⇒ Wrong weiter rechts stehenden Striche der unte­
 A vernier calliper is the most frequently ren Skala mit einem der oberen Skala
 used measuring device in the workshop. über­einstimmt – dieser gibt den Zehntel­
 millimeterwert an. Das Addieren der bei­
b) A calliper can measure diameters of bores
 den Werte ergibt das zu ermittelnde Maß.
 and shafts, the width and thickness of a
 part.
 ⇒ Correct 1.5 Micrometer (screw gauge)
c) There are three different types of callipers: Exercises page 13
 manual, digital and CNC callipers.
 ⇒ Wrong 1. Label the sketch of the mechanical mi-
 There are two different types of callipers: crometer a) to I) by reading the text above.
 manual and digital.
 a) b) d) e) f)
d) With the aid of a 1/20 nonius a measuring of
 0.02 mm is possible.
 ⇒ Wrong 35
 0 5 10

 With the aid of a 1/20 nonius an accuracy of
 30
 c)
 0.05 mm is possible. i) h)

e) Measurements of 0.001 inch, 0.01, 0.02 and j)
 g)
 0.05 mm are also possible.
 ⇒ Correct l) k)
f) Digital callipers are easier to read, cheaper
 and more often used nowadays.
 a) measuring faces b) lock
 ⇒ Wrong
 Digital callipers are easier to read and more c) anvil d) spindle
 often used nowadays, but not cheaper. e) screw f) spring
10 Measuring technique

g) ratchet h) rotary thimble 2. Answer the questions in English.
i) main scale and auxiliary scale a) Which surface testing instrument is very
 quick and easy to use? Why?
j) sleeve k) frame
 Surface roughness comparators, because
l) insulation plate they can be used during the manufacturing
 process, without having to place the work-
2. Read the correct measurements of the mi- piece in a measuring apparatus.
 crometers shown below.
 b) Explain why you can compare the surface
 20
 roughness visually and by touching.
 0 1 2 Because both methods make roughness
 a) in inch
 15
 comprehensible through senses.
 c) Describe how a stylus instrument works.
 40

 35 Stylus instruments are surface roughness
 b) in mm
 55 60 65 30
 testers, which record the peaks and val-
 25
 leys by a diamond stylus. It is drawn at a
 20 constant speed across the workpiece. The
 0 1
 c) in inch amount to which the stylus is raised or low-
 15 ered is printed in a diagram. It shows the
 increased surface profile.
a) 0.267 inch
 Exercises page 15
b) 65.34 mm
c) 0.192 inch 1. Answer the questions in English.
 a) Which surface texture parameters are often
1.6 Surface testing used in USA and which in Germany?
 The surface parameter Rz is widely used in
 Exercises page 14 Europe, Ra is the most specified U.S. pa-
 rameter.
1. Complete the missing information about
 form deviations in the table. b) Explain the difference between the surface
 parameter Rmax and Rz.
 Degrees of Examples Possible cause Rz considers the five highest peaks and the
 form devia- five deepest valleys. The complete evalua-
 tion tion length is divided into five cut-offs. In
 1st degree: straightness Clamping marks, each of these the highest distance between
 form devia- or round- wear in the peak and valley is a value (Rz1–5). Rmax re­
 tion ness, other guides of the presents the maximum height of the five
 than the re- machine tool
 values in the sampling length.
 quired form
 2nd degree: waves Vibrations of c) Why is the surface texture parameter Rmax
 waviness machine tool not a very reliable value?
 3rd degree: grooves Geometry of the Because it represents only an extreme and
 roughness cutting tool, feed not the average surface texture. This means
 or depth of cut one scratch could give a false impression
 of the tool dur- about the surface quality.
 ing fabrication of
 the part d) Explain the surface texture parameter Ra.
 4th degree: scoring, Sequence of chip Ra (arithmetic average roughness) consid-
 roughness scales, formation, sur- ers all peaks and valleys of the roughness
 bumps face deformation profile. Thus, extremes are neutralised and
 during fabrica- have no significant influence on the final re-
 tion of the part sult.
Fit Systems 11

2. Name the type of surface parameters and its value of the positions (1) to (4) shown in the figure.
(1) Rz = 2.8 μm (average peak to valley height) 2
 Ra 4.0 3
(2) Ra = 4.0 μm (arithmetic average roughness)

 Rz 2.8
 Rz 6.5
(3) Rz = 6.5 μm (average peak to valley height)
(4) Rz = 4.0 μm (average peak to valley height) 1 Rz 4.0

 4

3. Copy a roughness profile from your own test or from a book and add the three parameters:
 Rmax, Rz1–z5 and Ra.

 Rz1
 Rz2
 Rz3 Rz5
 Rz4

 Ra
 Rmax
 single evaluation length r

1.7 Fits
 Exercises page 16 2. Find the correct expressions and match
 them to the abbreviation.
1. Answer the following questions in English.
 a) FImin/FImax – minimum interference/maxi-
a) What is a fit? mum interference
 A fit is the dimensional relationship of two b) GIH/GUH – h ole minimum dimension/
 mating construction components. hole maximum dimension
b) Which two criteria are given to select the c) TH/TS – hole tolerance/shaft tolerance
 type of fit?
 The choice of the different fit is determined d) GIS/GUS – s haft minimum dimension/
 either by the use or by the production of the shaft maximum dimension
 parts. e) FCmin/FCmax – m
  inimum clearance/maximum
c) What are the dimensions of the hole and clearance
 shaft, when a clearance fit is given?
 The lower limit size of the hole is greater or 1.8 Fit Systems
 at least equal to the upper limit size of the
 shaft. Exercises page 17
d) Which three types of fits are possible? 1. Answer the questions in German.
 ­Explain!
 Clearance fit always enables some space a) Which difference do the basic hole system
 between the hole and shaft. The lower limit and the basic shaft system have?
 size of the hole is greater or at least equal to Beim System Einheitsbohrung wird die
 the upper limit size of the shaft. maximale Abweichung vom Nennmaß der
 Interference fit always has some excess ma- Bohrung festgelegt. Die gewünschte Pas-
 terial between the hole and shaft. The up- sung wird durch Auswahl einer Welle mit
 per limit size of the hole is smaller or at least entsprechender Toleranz erreicht.
 equal to the lower limit size of the shaft. Beim System Einheitswelle wird die maxi-
 Transition fit is a fit where both types of fit male Abweichung vom Nennmaß der Welle
 may occur. The tolerance zones of the hole festgelegt. Die gewünschte Passung wird
 and shaft partly or completely interfere. durch Auswahl einer Bohrung mit entspre-
 There can be a clearance fit or an interfer- chender Toleranz erreicht.
 ence fit.
12 Measuring technique

b) Where is the basic hole system used? b) Calculate the maximum and minimum
 Das System Einheitsbohrung wird haupt­ clearance or interference, by using your
 sächlich im Maschinenbau und in dem Metal Trade Handbook.
 Fahrzeugbau verwendet. a)
c) Which letters are used in the basic hole sys- hole limits:
 tem for interference fits? max. = 8.036 mm; min. = 8.000 mm
 H/n or p…z shaft limits:
 max. = 8.000 mm – d9
2. Determine the type of fit of the following = 8.000 mm – 0.040 mm = 7.960 mm
 fits: min. = 7.960 mm – 0.036 mm = 7.924 mm
 Maximum clearance
a) 8H9/d9 – clearance fit
 = max. hole – min. shaft
b) 24H7/s6 – interference fit = 8.036 mm – 7.924 mm = 0.112 mm
c) 9K7/h6 – transition fit Minimum clearance
 = min. hole – max. shaft
d) 153 H11/c11 – clearance fit = 8.000 mm – 7.960 mm = 0.040 mm
 b)
3. hole limits:
a) Read the required values for the fit of max. = 24.021 mm; min. = 24.000 mm
 Nr. 2 a) to d) from a Metal Trades Handbook. shaft limits:
a) max. = 24.048 mm; min. = 24.035 mm
8H9: 8.000 mm + IT9 = 8.000 mm Maximum clearance
 + 0.036 mm = 8.036 mm = max. hole – min. shaft
8d9: 8.000 mm – 0.040 mm = 7.960 mm = 24.021 mm – 24.035 mm = – 0.014 mm
 (upper specification limit) Minimum clearance
 7.960 mm – 0.036 mm (IT9) = 7.924 mm = min. hole – max. shaft
 (lower specification limit) = 24.000 mm – 24.048 mm = – 0.048 mm
b) c)
24H7: 24.000 mm + IT7 = 24.000 mm hole limits:
 + 0.021 mm = 24.021 mm max. = 9.005 mm; min. = 8.990 mm
24s6: 24.000 mm + 0.048 mm = 24.048 (upper shaft limits:
 specification limit) max. = 9.000 mm; min. = 8.991 mm
 24.048 mm – 0.013 mm = 24.035 mm Maximum clearance
 (lower specification limit) = max. hole + min. shaft
c) = 9.005 mm – 8.991 mm = 0.014 mm
9K7: 9.000 mm + K-value (table) Minimum clearance
 = 9.000 mm + 0.005 mm = 9.005 mm = min. hole + max. shaft
 (lower specification limit) = 8.990 mm – 9.000 mm = – 0.010 mm
 9.005 mm + IT7 = 9.005 mm – 0.015 mm d)
 = 8.990 mm (lower specification limit) hole limits:
9h6: 9.000 mm (upper specification limit) max. = 153.250 mm; min. = 153.000 mm
 9.000 mm + IT6 = 9.000 mm – 0.009 mm shaft limits:
 = 8.991 mm (upper specification limit) max. = 152.790 mm; min. = 152.540 mm
d) Maximum clearance
153H11: 153.000 mm (lower specification limit) = max. hole – min. shaft
 153.000 mm + IT11 = 153.000 mm = 153.250 mm – 152.540 mm = 0.710 mm
 + 0.250 mm = 153.250 mm Minimum clearance
 (upper specification limit) = min. hole – max. shaft
153c11: 153.000 mm – 0.210 mm = 153.000 mm – 152.790 mm = 0.210 mm
 = 152.790 mm (upper specification limit)
 152.790 mm – IT11 = 152.790 mm
 – 0.250 mm = 152.540 mm
 (lower specification limit)
Test unit for Measuring technique
Fit Systems Übungseinheit zur Messtechnik 13

You are an exchange student in Manchester, Inspection plan Key Fob
Great Britain, and work at a metal processing Identification number: 18012 Drawing number: 24108
company for three weeks. Your instructor has Designation: bracket Inspection plan no.: 82
given you a demonstration copy of a key fob and Serial Inspection Tolerance Measuring
forwarded you the order to produce one of it. No. ­characteristic (GTm) instrument
 1 length l1 = 50 mm ? ?
 2 diameter bracket
 ? ?
 d = 8 mm
 3 external diameter
 ? ?
 dex = 48 mm
 4 length l2 = 65 mm ? ?
 5 metric thread M8 ? ?
 6 depth of metric
 thread ? ?
You have milled and drilled the steel blocks and dmt = 20 mm
you have bent the brackets. So all of the parts are
on your workbench in front of you. 2. Your are back in your training workshop and
 present your manufactured key fob. Your in-
 structor would like to display this key fob on
 the special event of the open house.
 Therefore he asked you to translate the in-
 spection plan of the steel block and the
 ­bracket into German. Here is the beginning.
 Translate it completely.
 Steel block Bracket
 Prüfplan des Schlüsselanhängers
 xx: xx:
1. In order to check all relevant dimensions and xx: xx:
 to test if all parts can be assembled you have Ldf. xx xx xx
 to make an inspection plan of the steel block Nr.
 (part 1) and the bracket (part 2). 1 Länge l1 = 50 mm ? ?
 2 … ? ?
 The tolerances are according to General tole­
 rances, class m. (Use the Metal Trades Hand-
 book for looking up the tolerances) 3. Now check your knowledge about measuring
 techniques and equipments with the cross-
 Inspection plan Key Fob word puzzle below.
 Identification number: 18012 Drawing number: 24107
 Designation: steel block Inspection plan no.: 81 1 2
 Serial Inspection Tolerance Measuring 3
 No. ­characteristic (GTm) instrument
 4 5
 1 length l1 = 65 mm ? ?
 2 width w1 = 12 mm ? ? 6 7
 3 height h1 = 40 mm ? ?
 4 groove,
 ? ? 8
 lenght l2 = 50 mm
 5 groove,
 ? ? 9
 height h1 = 8 mm
 6 internal diameter
 ? ?
 groove d1 = 16 mm
 ACROSS DOWN
 7 diameter hole2
 ? ? 3 A general measuring device 1 If you have an incorrect eye
 d2 = 8.1 mm used to find out smaller position when reading the
 distances and measure scale, these errors can occur
 8 depth of hole2 workpieces 2 The right instrument for very
 ? ?
 dh2 = 12 mm 6 A prefix for units for a multiple accurate measurements
 of thousand 4 A relationship between a bore
 9 distance from 7 With this instrument you can and a matching shaft is called:
 center of holes ? ? record the roughness of a 5 The measuring devices
 surface represent certain dimensions
 dh1/h2 = 40 mm 8 The most commonly used unit or geometric forms e.g. radii
 for electric current
 10 diameter hole3 7 Number of base quantities in
 ? ? 9 The common unit for a force technology
 d3 = 8.1 mm
14 Quality management

 2 Quality management

2.1 Basics of quality management d) Which different stages appear in a product
 circle?
 Exercises page 18 Construction, development – Production
 planning – Quality planning – Inspection
1. Working with words. Which words from e.g. supplied parts – Quality control – Qual-
 the text are described here? ity improvement – Production – Assembly –
a) If the product looks really good, the design Product – Final testing – Delivery
 is very appealing.
 2.2 Quality tools
b) If the device runs without a problem for a
 long time, it is very reliable. Exercises page 19
c) If the product can be used in many different
 ways, the performance is very high. 1. Answer the questions:
 a) Which two type of graphs are used in a Pa-
2. Translate the definition of quantitative and reto chart?
 qualitative characteristics. Bars and a line. The bars indicate the type
 Quantitative Merkmale sind messbar oder and the frequency of the defects. The line
 können gezählt werden, beispielsweise die displays the cumulative total of the errors.
 Länge eines Werkstücks oder der Durch- b) Why is the Ishikawa diagram also called
 messer einer Welle. fishbone diagram?
 Qualitative Merkmale beschreiben eine Because both terms name the same kind of
 Beschaffenheit, wie beispielsweise die diagram – a cause-and-effect diagram.
 Qualität der Lackierung eines Fahrzeugs. The fishbone represents the skeleton
 (cause) of the 6 effects.
3. Answer the following questions in English.
 c) What is meant by the 6 Ms?
a) Which 3 quality characteristics (= require- manpower, machine, method, material, mi-
 ments of the customer) should your next lieu, measurement
 smart phone have?
 It should have an appealing design, good d) Which function has a tally sheet?
 performance, diverse functions and be very A tally sheet is used to summarize data in
 reliable. order to draw a histogram.
b) Which system supports the quality process e) What is shown in a histogram?
 in companies? A histogram shows the distribution of
 A quality management system according to measured results. It indicates the frequen-
 ISO 9000 standards. cy of data within a range of values, called
 a class.
c) What does the 1-10-100 rule describe?
 The 1-10-100 rule states that when a pro­duct f) What does the height of a bar in a histo-
 moves through a production sequence, the gram show?
 cost of correcting an error multiplies by 10 The height of a bar in a histogram indicates
 from stage to stage. the frequency of the data that falls in each
 class.
Normal distribution 15

2. Draw a histogram on an extra sheet of paper by using the data below.

 Length of the shaft in mm
 Measured 14.990 14.995 15.000 15.005 15.010 15.015 15.020 15.025 15.030 15.035
 values
 Frequency nj 2 5 10 13 15 16 13 9 6 3

 18

 16

 14

 12

 10
 Frequency n j

 8

 6

 4

 2

 0
 14.990 14.995 15.000 15.005 15.010 15.015 15.020 15.025 15.030 15.035

 Length of the shaft in mm

2.3 Normal distribution
 Exercises page 20 ihre Verteilung auf die Fächer im unteren
 Teil des Apparats überprüft.
1. Give three examples of nature or techno­
 c) Experimental result
 logy in which data can be normally distri­
 buted. Die unterschiedlichen Höhen der Säulen
 bilden in allen Fällen eine Kurve in der Form
 • Intelligence of humans einer Glocke. Diese wird Glockenkurve,
 • Body height of people Gaußsche Verteilungskurve oder Normal-
 • Deviations from the diameter of turned verteilungskurve genannt.
 shafts.
 3. Translate the sentences according the nor-
2. Explain the experimental principle of a mal distribution into English:
 Galton board in German. Use the following a) Die Normalverteilung entsteht, wenn viele
 structure: zufallsbedingte Einflüsse wirksam sind.
a) Construction of the board A normal distribution occurs when many
 Das Galton-Brett besteht aus einer verti- random influences are effective.
 kalen Fläche, auf der Stiftreihen in gestaf- b) Sie zeigt eine typische Glockenkurve der
 felter Reihenfolge so angeordnet sind, dass _
 Häufigkeit über dem Merkmal x ​​​​ .
 herunterfallende Kugeln nach links oder
 It shows a typical bell-shaped
 _ curve of fre-
 rechts daran abprallen können. Die Vorder-
 quency around the mean x ​​ 
 ​​ .
 seite des Geräts besteht aus Glas, damit _
 der Weg der Kugeln beobachtet werden c) Der Mittelwert ​​ x ​​  liegt beim Kurvenmaxi-
 kann. Unterhalb der Hindernisse werden mum und zeigt die Lage der Verteilung.
 _
 die Kugeln in Fächern aufgefangen. The mean ​​ x ​​ is located at the peak of the
b) ExperimentaI procedure curve and shows the position of the distri-
 bution.
 Eine Anzahl Kugeln wird auf die Hinder­
 nisreihen fallen gelassen und anschließend
16 Quality management

d) Die Standardabweichung kennzeichnet die 2.5 Machine capability
 Streuung, d. h. die Verteilung um den Mit-
 telwert. Exercises page 22
 The standard deviation indicates the varia-
 tion, i. e. the distribution around the mean 1. Translate the following sentences into
 value. English:
 a) Maschinenfähigkeitsuntersuchungen (MFU)
2.4 Statistical characteristics of data werden vor dem Einsatz von Maschinen, bei
 quantities Maschinenabnahme sowie nach umfang­
 reichen Wartungsarbeiten und Re­paraturen
 Exercises page 21 eingesetzt.
 Machine capability tests (MCT) are applied
1. Translate the definition in German of before machine use, during machine ac-
a) the arithmetic mean ceptance and after extensive maintenance
 _ and repairs.
 Der arithmetische Mittelwert x ​​ 
 ​​ einer Reihe
 von Daten wird als Summe der einzelnen b) Die MFU wird über einen längeren Zeitraum
 Daten geteilt durch die Anzahl der Daten durchgeführt.
 errechnet. The MCT is applied over a longer period of
b) the median time.
 ~ ist der mittlere Wert ei­
 Der Medianwert ​​ x ​​ c) Bei der MFU werden in einem Vorlauf zur
 ner Datenreihe, die in aufsteigender Rei- Fertigung mindestens 25 Teile gefertigt und
 henfolge sortiert ist. Bei ungerader Anzahl ihre Maße geprüft.
 von Daten ist er identisch mit dem Wert, During an MCT, at least 25 parts are manu­
 der in der Mitte der Sequenz liegt. factured in a lead-up to production and
c) the range their dimensions are checked.
 Die Spannweite R bezeichnet die Differenz d) Der Mittelwert, die Spannweite und Tole­
 zwischen dem höchsten (xmax) und dem ranz sind wichtige Werte zur Auswertung
 niedrigsten Einzelwert (xmin). der MFU.
 The mean value, the range and the tole­
2. Your company inspects the ­ d iameter rance are important values for the evalua-
 of produced shafts. The nominal value tion of the MCT.
 = 19+/– 0.001 mm. The result of a sampling e) Zur Auswertung der MFU werden die ge-
 test is presented in the following table: messenen Maße der gefertigten Teile als
 Diameter of shafts Normalverteilungskurve in ein Koordina­ _
 tensystem gezeichnet und der Mittelwert x ​​
 ​​ ,
 Measured value in mm Number of values
 die Spannweite R, die Standardabweichung
 18.999 3 s und die Toleranz T eingetragen.
 19.000 6 To evaluate the MCT, the measured dimen-
 19.001 8 sions of the manufactured parts are drawn
 19.002 5 as a normal distribution curve into a_coor-
 dinate system and the mean value ​​ x ​​, the
 19.003 2
 range R, the standard deviation s and the
 19.998 4 tolerance T are marked.

 Calculate the following values by using an 2. In the sentences of exercise 1 are three
 electronic calculator: wrong statements. Find and correct them.
 _
a) the mean value x ​​ 
 ​​ 
 _ The wrong statements and corrections are:
 x ​​ 
 ​​ = 19.143 mm
 b) The MCT is a short term study.
b) the range R
 c) During an MCT at least 50 parts are
 R = 0.999 mm
 manufactured in a test run.
c) the standard deviation s
 e) The range R is not marked in the coordi-
 s = 0.030 mm nate system of an MCT.
d) ​​ ~
 the median x ​​ 
 ​​ ~ = 0.126 mm
 x ​​ 
Statistical process control with quality control chart 17

2.6 Process capability The mean diameter from each sampling lot
 can be taken out of the table below:
 Exercises page 23
 sampling lot mean diameter
1. Find the missing word from the text above: 1 30.01
 2 30.02
a) The “C” in the process capability indexes
 Cp and Cpk stands for capability. 3 29.08
 4 30.00
b) The process capability is carried out within
 a long-term period. 5 29.08
 6 29.09
c) The difference between the upper limit val-
 ue (ULV) and the lower limit value (LLV) is 7 30.01
 called the tolerance. 8 30.02
 9 30.01
d) If parts are produced in the required quality
 without faulty ones in a long term the pro- 10 30.00
 cess is consistent. 11 29.09
e) The process capability Cp doesn’t consider 12 29.09
 if the curve is off-centre.
 a) Draw a mean chart (see figure in text above)
 and label the different axis and limits.
2. Explain, why the curve (4) in the figure
 above is capable but not consistent.
 Because it reaches outside of the tolerance
 30.6
 limits. 30.4 UWL
 UCL
 30.2 USL
 30.0
2.7 Statistical process control with 29.8
 29.6
 LSL
 LCL
 quality control chart 29.4
 29.2
 LWL

 29.0
 28.8
 Exercises page 24 28.6

 2
 sa ling 10

 g 1
 t1
 1
 sa ling 1

 sa ling 2

 sa ling 3

 sa ling 4

 sa ling 5

 sa ling 6

 sa ling 7
 sa ling 8

 sa ling 9
 p lot

 pl lot
 p lot

 p lot

 p lot

 p lot

 p lot

 p lot

 p lot

 p lot
1. Translate the purpose of using control p lot

 lo
 sa ling

 in
 charts in series production into German.
 p

 m
 m

 m
 m

 m

 m

 m

 m

 m

 m

 m

 m
 sa

 Mit der Darstellung von Messwerten in
 einer Qualitätsregelkarte kann beurteilt
 werden, ob der Fertigungsprozess stabil
 b) Add the measured values of the table into
 oder instabil ist und die Produkte die Spezi-
 the chart and connect them by lines.
 fikationen im Rahmen der Toleranzen erfül-
 len.

2. Your company produces shafts at a CNC 30.6
 UWL
 turning machine. The diameter of the shaft 30.4
 30.2
 UCL
 USL
 can be taken out of the technical drawing: 30.0
 29.8 LSL
 30 ± 0.05 mm. Besides you have the fol- 29.6 LCL
 LWL
 lowing limits given below: 29.4
 29.2
 Upper control limit: 29.07 mm 29.0
 28.8
 Upper warning limit: 29.08 mm 28.6
 2
 sa ling 10

 g 1

 Lower control limit: 30.03 mm
 t1
 1
 sa ling 1

 sa ling 2

 sa ling 3

 sa ling 4

 sa ling 5

 sa ling 6

 sa ling 7
 sa ling 8

 sa ling 9
 p lot

 pl lot
 p lot

 p lot

 p lot

 p lot

 p lot

 p lot

 p lot

 p lot
 p lot

 lo
 g

 Lower warning limit: 30.02 mm
 in
 in
 pl

 m
 m

 m
 m

 m

 m

 m

 m

 m

 m

 m

 m
 sa

 sa
18 Quality management

 _
 Exercises page 25 ​​ x ​​– s-charts exhibits more sensitivity than
 the x ​​ ~
1. Answer the following questions in English.
 _ ​​ –R-charts.
 ​​ x ​​– s-charts are more complex to calculate
a) Why are two-track charts, showing two and therefore used for compu­ter-aided con-
 different statistical values, used in control trol chart management.
 charts?
 They provide two aids to describe the same 2. Explain three typical courses in control
 process. This increases the chance to check charts in German by using the information
 if the process is out of control or to mark in the table above.
 the causes of variations. Run: 7 oder mehr aufeinander folgende
b) ~ – R-chart and when
 When do you use a ​​ x ​​ Werte liegen auf einer Seite der Mittellinie.
 _
 are x ​​ ​​ –s-charts used? Explain! Trend: 7 oder mehr aufeinander folgende
 ~
 ​​ x
 ​​ –R-charts are used in many industries to Werte zeigen eine steigende oder fallende
 examine the stability of processes and can Tendenz.
 be used for manual control chart manage-
 ment. Middle Third: Mindestens 15 Werte liegen
 aufeinander folgend innerhalb ± Standard-
 abweichung s.
Test unit for Quality management
Statistical process control with quality control chart
 Übungseinheit zur Qualitätssicherung 19

1. 10-minutes quiz to check your knowledge e) Which quality tools are used in industry?
 about quality management!
a) What is meant by the expression "quality"?
 f) Explain Pareto´s principle!

b) Why is quality management essential for com-
 panies?
 g) What is the content of a tally sheet?

c) In which areas of a company is quality man-
 agement necessary? Mention 3 different ones h) What can you do with it?
 and explain.

 i) What is the name of a common bar chart
 showing the frequency of data within a certain
d) What is the 1-10-100 rule? Explain. range?

 j) Which values can be calculated from this chart?

2. Your company Metallix produces shafts for E-bikes by turning. You recieve a raw data list of a sam-
 ple of 56 different measurements of the nominal length of the shaft l = 56 mm +/–0.2 mm.
 Measured value no. Measured values in mm
 1…10 39.89 40.03 40.10 40.02 40.09 39.97 40.04 39.99 39.98 40.10
 11…20 40.00 39.99 40.00 40.04 40.00 40.01 40.02 40.01 40.03 40.07
 21…30 40.02 40.02 40.07 40.02 40.02 40.14 40.07 40.03 40.03 39.94
 31…40 40.03 40.06 40.03 40.04 40.07 40.04 40.04 40.00 40.04 40.05
 41…50 40.05 40.05 40.06 40.05 40.06 40.05 39.96 40.06 40.03 40.03
 51…56 40.07 40.03 40.08 40.08 40.10 40.02

 Calculate the statistical characteristics of the Evaluation form
 data series and draw a histogram according evaluation:
 sample:
 part no:
 1234567
 measuring charac-
 scope: teristics:
 inspected
 dimension:
 measuring device:
 digital micrometer
 responsible
 employee:
 date:

 to the calculation scheme of the adjacent
 n = 56 length l 40 ± 0,2 mm LR

 form. Measured
 value no.
 Measured values in mm
 1…10 39.89 40.03 40.10 40.02 40.09 39.97 40.04 39.99 39.98 40.10
a) Enlarge the page on the right to DIN A4 size. 11…20
 21…30
 40.00
 40.02
 39.99
 40.02
 40.00
 40.07
 40.04
 40.02
 40.00
 40.02
 40.01
 40.14
 40.02
 40.07
 40.01
 40.03
 40.03
 40.03
 40.07
 39.94
 To do this, use the print function in the top line 31…40
 41…50
 40.03
 40.05
 40.06
 40.05
 40.03
 40.06
 40.04
 40.05
 40.07
 40.06
 40.04
 40.05
 40.04
 39.96
 40.00
 40.06
 40.04
 40.03
 40.05
 40.03
 of the computer keyboard, for example. 51…56 40.07 40.03 40.08 40.08 40.10 40.02

b) Calculate the statistical parameters using the
 Data and calculations Creating a histogram:
 Calculations
 nominal value N = __ nc
 k = √n ; b = __ R ; x = __
 formulas given and enter them in the calcula- upper shaft tolerance
 lower shaft tolerance
 Ao =
 Au =
 k W

 number of classes: k ≈
 n
 rounded:

 tion scheme. tolerance
 shaft maximal dimension
 T =
 GUS =
 class interval:
 frequency of a
 b ≈
 xw
 rounded:

 shaft minimum dimension GIS = class interval:

c) Calculate the characteristic values for creating centre of tolerance M = nj
 Tally sheet hj = __
 n
 a histogram. Statistical characteristics class
 measured
 value tally list nj
 hj
 number of measured values n = no. in %
 ≥ ≤

d) Create the data collection list (tally sheet). Limit values
 1
 2
 maximum value xmax = 3

e) Draw the histogram in the form. minimum value xmin =
 4
 5
 6
 Range of variance R = xmax – xmin 7
 8
 range R =
 9

 Median value Histogram
 ~ = 30
 median value x
 25
 frequency hj

 20
 Mean value 15
 _ x1 + x2 + x3 + … xn
 x = _________________
 n
 10
 _ 5
 mean value x =
 0
 1 2 3 4 5 6 7 8 9
 classes
20 Production engineering

 3 Production engineering

3.1 Safety at work
 Exercises page 26 (3) Fire extinguisher
 Feuerlöscher → i
1. Translate the descriptions.
 (4) Warning: Hazardous area
 Then match it to the signs, e. g. 1 → h. (Use Achtung: Gefahrenbereich → g
 your Metal Trades Handbook if necessary)
 (5) No cell phones
 a) b) c) Keine Mobiltelefone → j
 (6) Warning: Corrosive substances
 Achtung: Ätzende Substanzen → e
 d) e) f) g) (7) Wear face protection
 Gesichtsschutz tragen → b
 (8) Pedestrian access prohibited
 h) i) j) Zutritt für Fußgänger verboten → c
 (9) No forklifts
 Keine Gabelstapler/Flurförderfahrzeuge → a
 (10) Warning: Toxic substances
(1) Wear protective gloves Achtung: Giftige Substanzen → d
 Handschutz benutzen → h
(2) Eye rinsing equipment
 Augenspüleinrichtung → f

2. Complete the table and describe the safety signs. Give one example of each category.
 Safety sign Geometrical form Colour Meaning Example
 Mandatory sign round/circular blue/white You must wear the Wear gloves
 item.
 Prohibitive sign round/circular red/white/black It is forbidden to… No forklifts
 Warning sign triangular yellow/black Warning: … Warning: Corrosive
 substances
 Escape and rescue square or rectan- green/white Escape route or Eye rinsing equip-
 sign gular rescue equipment ment
Sie können auch lesen