In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik

Die Seite wird erstellt Stefan-Santiago Neubert
 
WEITER LESEN
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Schulinternes Fach-Curriculum
Mathematik
der Paul-Kraemer-Schule
in der Fassung von Februar 2018
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Anmerkung:
Zur besseren Lesbarkeit des Textes wurde auf die jeweils weibliche Form verzichtet. So sind etwa mit der Formulierung
„Schüler“ immer Schülerinnen und Schüler gemeint.

Inhalt

1      Vorwort

2      Entwicklungsmodell früher mathematischer Kompetenzen (nach Krajewski, 2013)
2.1    Beispielaufgaben (Kompetenzen) für die verschiedenen Ebenen

3      Kompetenzbereiche
3.1    Kompetenzbereich Pränumerik: Stufenfolgen pränumerischer Bereich
3.2    Kompetenzbereich: Menge und Zahl
3.3    Kompetenzbereich: Rechenoperationen in Zahlenräumen
3.4    Kompetenzbereich: Größen
3.5    Kompetenzbereich: Gewicht
3.6    Kompetenzbereich: Fläche
3.7    Kompetenzbereich: Volumen
3.8    Kompetenzbereich: Zeitraum, Uhr, Zeitmessung
3.9    Kompetenzbereich: Geometrie

4      Literatur

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                          2
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

1      VORWORT

Dem vorliegenden schulinternen Curriculum Mathematik geht eine Phase der Fortbildung, der Diskussion
und der Sichtung von Literatur voraus.
Aus der vor einigen Jahren getroffenen Übereinkunft das grundlegende Werk Zalo Zifferli als erstes und
grundlegendes Werk im Unterricht zur Grundlage zu machen und Lernstrukturgitter zur Dokumentation
individueller Lernfortschritte zu nutzen, entwickelte sich logisch anschließend die Notwendigkeit der Fort-
setzung und Erweiterung des Zahlenraumes und der weiteren Bereiche der Mathematik Größen und Geo-
metrie, insbesondere im Hinblick auf ältere Schüler.
Die Fachkonferenz Mathematik schlägt außerdem folgendes vor: Es sollen Materialien angeschafft werden,
die in allen Klassen vorhanden sind und die Schüler somit durch ihr gesamtes Schulleben begleiten.
Hiermit soll erreicht werden, dass allen Schülern das Material durchgängig durch die unterschiedlichen
Schulstufen bekannt und die Arbeit damit geläufig ist. Eine Fortbildung des Kollegiums bei Herrn Dr. Simon
soll die Entscheidung über die Anschaffung geeigneter Materialien unterstützen. Fortbildungen zu den an-
geschafften Materialien sollen die Fähigkeiten der Kolleginnen und Kollegen beim Einsatz der Materialien
erweitern.
Im vorliegenden Curriculum Mathematik sind folgende Kompetenzbereiche berücksichtigt:
•   Pränumerik,
•   Menge und Zahl,
•   Rechenoperationen in Zahlenräumen,
•   Größen.

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                           3
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

      2    ENTWICKLUNGSMODELL FRÜHER MATHEMATISCHER KOMPETENZEN (nach Krajewski, 2013)

Abbildung 1: Modell der Zahl-Größen-Verknüpfung nach Krajewski (Krajewski & Ennemoser, 2013, 43)

2.1       Beispielaufgaben (Kompetenzen) für die verschiedenen Ebenen

Ebene 1:        Zahlendiktat
                Vorgänger / Nachfolger
Ebene 2:        Zahlenvergleich
                Zahlverortung am Z-Strahl

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                     4
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Ebene 3:       Zerlegungsstrategien
               Platzhalteraufgaben

Es handelt sich um ein Entwicklungsmodell, das die Einsicht in das kardinale Zahlverständnis als einen
fortschreitenden Prozess versteht, der zuerst in einem kleineren Zahlenraum stattfindet und dann auf
höhere Zahlenräume übertragen wird.

Das Modell sieht drei Ebenen vor (vgl. Abb. 1), auf denen jeweils Teilkompetenzen verankert sind. Diese
liegen zunächst isoliert vor und werden sukzessive zu Kompetenzen auf einer höheren Ebene miteinander
verknüpft.
Ebene 1:
• Mengen aufgrund ihrer unterschiedlichen Ausdehnung oder Fläche bzw. ihres Volumens grob
   voneinander zu unterscheiden,
• Kenntnis der Zahlwörter bzw. der Erwerb der Zahlwortreihe, jedoch ohne kardinales Verständnis
Ebene 2:
• Zahlwörter mit Mengen verknüpfen,
• Verständnis dafür, dass eins oder zwei „wenig“ und hundert und tausend „sehr viel“ ist (auch möglich,
   wenn die Zahlwortreihe bis 100 noch nicht beherrscht wird),
• präzise Anzahlkonzept bzw. das kardinale Verständnis von Zahlen, das die Vorstellung beinhaltet, dass
   zum Zahlwort „Vier“ genau vier Elemente gehören, und dass die Anzahl der Elemente mit jedem neu
   dazu kommenden Zahlwort um eins zunimmt („n+1-Strategie“).
Ebene 3:
• relationales Zahlverständnis, d.h. die Einsicht in Zahlbeziehungen,
• Zerlegung und Zusammensetzung von Zahlen (z.B. 5 setzt sich aus 2 und 3 zusammen) sowie die
   Differenz zwischen zwei Zahlen (z.B. der Unterschied zwischen 3 und 5 ist 2).
Diese Einsicht in die Beziehung zwischen einem Ganzen und seinen Teilen gilt als wichtige Voraussetzung
für den Erwerb der Addition und Subtraktion (Ennemoser & Krajewski, 2007; Langhorst, Ehlert & Fritz,
2012).
Das Modell ist zwar hierarchisch gezeichnet, versteht sich aber nicht als starre Entwicklungslogik. Zudem
spielt auch eine Rolle, in welcher Repräsentationsform die Aufgaben gestellt werden. So kann eine
bestimmte Kompetenz beispielsweise handelnd bereits erworben sein, in einer abstrakteren Form jedoch
noch nicht.
Das „Kernstück“ des Modells ist die Entwicklung des präzisen Zahlverständnisses auf Ebene 2. Dieses stellt
eine unabdingbare Voraussetzung dar für den Erwerb der Grundoperationen und gilt als Prädiktor für die
weitere mathematische Entwicklung
(Quelle: http://www.psychologie-aktuell.com/fileadmin/download/esp/1-2015_20150205/esp_1-2015_24-
40.pdf).

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                          5
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

3       KOMPETENZBEREICHE

3.1     Kompetenzbereich Pränumerik: Stufenfolgen pränumerischer Bereich

Kompetenzen                                  Ideen für den Unterricht                Beispiele / Materialien
Körperschema – als Grundlage der
räumlichen Orientierung
Raumerfahrung
•     verschiedene Räume wahrneh-            •   mit verschiedenen Sinnen
      men
•     im Raum bewegt werden                  •   im Sportunterricht à fahren,
                                                 tragen
•     sich selbst durch den Raum be-         •   -
      wegen
•     Raumbegrenzungen erfahren              •   sich in eine Kiste setzen, Höhlen
                                                 bauen
•     Räume als voll oder leer erleben       •   -
•     Räume füllen                           •   Hohlkörper füllen, Bus mit SuS
                                                 füllen
Raumorientierung
•     Beziehungen von Gegenständen           •   vor mir, hinter mir
      zum eigenen Körper erfassen
•     Beziehungen von Gegenständen           •   was steht unter dem Tisch, was
      zueinander erfassen                        steht neben der Tafel
•     Lagebeziehungen herstellen             •   auf den Tisch stellen, etwas zwi-
                                                 schen die Stühle legen
•     Wege im Raum begehen                   •   sich mit offenen oder verbunde-
                                                 nen Augen nach Richtungsanga-
                                                 ben durch den Raum bewegen
Gruppen und Untergruppen bilden

Strukturierung von Mengen nach
Gegenstandsgruppen
•     gleichartige Gegenstände aus           •   -
      einer Vielzahl von Gegenständen
      erkennen und zusammenfassen
•     gleichartige Gegenstände auf           •   -
      Abbildungen erkennen und mar-
      kieren

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                 6
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Merkmale von Gegenständen fest-
stellen: Form, Größe, Farbe

Formen erfahren,
Eigenschaften erkennen,
Bezeichnung benennen
•   Größe am eigenen Körper erfah-           •   -
    ren
•   Bezeichnung groß – klein verste-         •   -
    hen und sachgerecht verwenden
•   große und kleine Gegenstände             •   -
    auf Abbildungen erkennen
•   Größe als relativ verstehen              •   Katze ist im Vergleich zum Elefan-
                                                 ten klein, im Vergleich zur Maus
                                                 groß
Farben entdecken, erkennen, unter-
scheiden und benennen
Gruppen und Untergruppen nach
erarbeiteten Merkmalen bilden
Objektvergleich
• Gleichartigkeit zweier Gegen-              •   zwei gleiche Spielsachen
   stände erfassen
• aus einer Vielzahl von Gegen-              •   Handschuhe und Schuhe zu Paa-
   ständen erkennen und zusam-                   ren ordnen
   menfassen
• Gleichartigkeit auf Abbildungen            •   Arbeitsblätter, Memory
   erkennen und verbinden
• zwei Gegenstände vergleichen               •   Begriffe „gleich“ und „ungleich“
                                                 verwenden,
                                             •   Rechenzeichen „=“ und „≠“ ein-
                                                 setzen
Gruppenbildung nach einem Merk-              •   Ordnen nach Form, Größe oder
mal                                              Farbe
                                             •   Gegenstände nach anderen Qua-
                                                 litäten ordnen (Material, Spiel-
                                                 zeug)
                                             •   Mitschüler nach Geschlecht,
•   Regeln einer vorgegebenen Ord-               Haarlänge gruppieren
    nung erkennen                            •   Ordnungsprinzip im Freiarbeits-
•   eigene Ordnungsregeln aufstel-               regal, Geschirrschrank
    len
Gruppenbildung nach mehreren                 •   Elemente nach Kombinationen
Merkmalen                                        von Merkmalen ordnen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                        7
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                             •   innerhalb einer schon geordneten
                                                 Menge Untergruppen
Raumbegriffe gewinnen

Raumordnungsbegriff                          •   Standpunkte im Raum einneh-
                                                 men
•   verstehen und gebrauchen                 •   „hinten-vorne“, „oben-unten“
                                             •   „links von-rechts von“, „über-
                                                 unter“, „zwischen-neben
Raumvorstellung
•   Lage von Gegenständen im Raum            •   „vor-hinter“
    erfassen
•   aus verschiedenen Perspektiven           •   von der Tür aus gesehen, von mir
    beschreiben                                  aus gesehen...
Reihen bilden

Reihenbildung mit gleichartigen              •   Perlen auffädeln
Gliedern
•   Reihenbildung in der Umwelt              •   Alleebäume, Fensterreihen
    erkennen
•   einfache Reihen herstellen und           •   Dominosteine aufstellen und
    den Zusammenhang der Elemen-                 umfallen lassen
    te erkennen
•   einfache Reihen herstellen und           •   „zuerst kommt“, „dann kommt“,
    Positionsbegriffe verwenden                  „zuletzt kommt“
                                             •   „am Anfang“, „in der Mitte“, „am
                                                 Schluss“
Merkmalsreihen
•   eine Menge von Elementen be-             •   „rosa Turm“ „Babuschka“
    züglich ihrer Größe ordnen
•   Beziehungen von Elementen                •   „am größten“ „am kleinsten“
    sachgerecht beschreiben                      „kleiner als“ „größer als“
•   eine Reihe von Elementen be-             •   nach Helligkeit, nach Mächtigkeit,
    zügl. anderer Merkmale ordnen                nach Gewicht, ...
•   einen Gegenstand in eine vorge-          •   einen Karton in eine nach der
    gebene Merkmalsreihe ordnen                  Größe sortierten Reihe von Kar-
                                                 tons einordnen
Rhythmische Reihen
•   erkennen und benennen                    •   Muster auf Perlenschnur verlän-

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                        8
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                                 gern (rund, eckig, rund eckig...
                                                 oder rot, grün, blau, rot, grün,
                                                 blau...)
•   rhythmische Reihen selbst erfin-         •   Muster für Perlenketten selbst
    den                                          erstellen, Bauklötze nach einem
                                                 Muster aufstellen
Gleichheit von Gegenstandsmengen
erfassen

Qualitativer Vergleich von Mengen            •   unterschiedliche Qualitäten er-
                                                 kennen (ein Korb Äpfel, ein Korb
                                                 Birnen)
                                             •   Vergleich zweier unterschiedli-
                                                 cher Mengen (beide Mengen be-
                                                 stehen aus Perlen, die einen rot,
                                                 die anderen blau)
Quantitativer Vergleich von Mengen           •   zwei konkrete Mengen unter-         Mathekrokodil – das Kro-
                                                 scheiden (auf welchem Teller sind   kodil frisst immer die grö-
                                                 mehr Gummibärchen, in welcher       ßere Menge
                                                 Kiste mehr Bauklötze...)            (Achtung – Leserichtung –
•   Mengenunterscheidung real und            •   Verwenden der Begriffe „mehr“       wichtig mit „größer als“
    mit Abbild                                   oder „weniger“ sowie Einsatz der    und „kleiner als“ arbeiten)
•   Einsatz von Rechenzeichen                    Rechenzeichen „>“ und „
In der Fassung von Februar 2018 - Schulinternes Fach-Curriculum Mathematik
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

      erhalten bleibt

3.2     Kompetenzbereich: Menge und Zahl

Kompetenzen                                   Ideen für den Unterricht               Beispiele / Materialien
Abzählen können
•     1-3                                     •   Abzählen in verschiedenen Situa-   Cuisinaire-Stäbe, Mont-
•     1–6                                         tionen mit verschiedenen Materi-   essori-Material (Perlen),
•     1 – 10                                      alien (z.B. beim Tisch decken…)    Systemblöcke (Einer,
•     0 - 10                                  •   „sichtbares“ und „unsichtbares“    Zehnerstangen. Hunder-
                                                  Zählen (Dinge in einem Beutel      terblöcke), Steckwürfel,
                                                  verstecken)                        Wendeplättchen, Abzäh-
                                                                                     len mit den Fingern,
                                                                                     Abakus (Perlen auf der
                                                                                     Stange), Muggelsteine
•     Anzahlen in Bewegungsfolgen             •   Eierkartons packen
      umsetzen
•     rhythmisches Zählen (mit Zeigen         •   Gegenstände zählend weglegen,
      auf das Element)                            Würfelspiele, Trommeln, Tanz-
                                                  schritte
Mengen erfassen
•     simultanes Erfassen (0 - 3)             •   Fingerübungen, Legen von Bil-      Legeplättchen, Finger,
                                                  dern, vergleichen und zuordnen     Mengenabbildungen
•     Würfelbilder erkennen                   •   Würfelspiele                       Würfel, Würfelkarten
                                                                                     („PunktMalPunkt“ von
                                                                                     Mildenberger)
•     Mengen schätzen                         •   -                                  Systemblöcke (Einerwür-
                                                                                     fel) etc.
•     Mengen vergleichen                      •   Vergleichen unabhängig von der     Gegenständliche Dinge
                                                  Größe der Elemente und der Ent-    wie Systemblöcke (Ei-
                                                  fernung der einzelnen Elemente     nerwürfel), Cuisinaire-
                                                  (Mengeninvarianz)                  Stäbe etc.
•     Mengen ergänzen                         •   Partnerzahlen                      Steckwürfel, Lego, Bau-
                                              •   Baupläne lesen und ergänzen        klötze, Systemblöcke,
                                              •   Muster legen, Formen ergänzen      Cuisinaire-Stäbe
Ziffern
•     0 - 9 benennen                          •   Gebärden
•     0 - 9 zuordnen                          •   Zahlbild zu Mengendarstellung
                                                  zuordnen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                10
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Ordnungszahlen
•   Unterscheidung zwischen „Erster“          •   -
    und „Letzter“
•   Positionen in einer Reihe zuord-          •   Reihen bilden (z.B. Sport-
    nen (1., 2., 3. etc.)                         unterricht)
•   Abschnitte herstellen können              •   .
    (vorne, Mitte, hinten)
•   Zahlenreihen automatisieren               •   Zahlenreime, Spiele etc.
•   Zahlenreihen vorwärts bilden              •   Punktebilder, Bilderrätsel
•   Zahlenreihen rückwärts bilden             •   Raketenstart
•   Nachbarzahlen (Vorgänger, Nach-           •   Zahlenstrahl, Hundertertafel       Vervollständige unter-
    folger)                                                                          brochene Zahlenfolgen!
Stellenwerte
•   Menge 5 als „volle Hand“ erken-           •   -                                  reale Hand und bildliche
    nen und einsetzen                                                                Darstellung der Hände
•   Menge 10 als „2 Hände“ erkennen           •   -
    und einsetzen
•   Menge 10 als Einheit erkennen             •   -
•   Menge 10 zerlegen können                  •   -                                  Cuisinaire-Stäbe
•   Menge 10 ergänzen können                  •   -                                  Cuisinaire-Stäbe, Steck-
                                                                                     würfel
•   Menge 10 verteilen können                 •   -                                  Cuisinaire-Stäbe, Steck-
                                                                                     würfel, 100er Block,
                                                                                     Perlenketten
•   Begriffe „Einer“ und „Zehner“             •   -
    kennen
•   gleiche Wertigkeiten erkennen             •   eintauschen, einordnen             Symboltausch (1 Fünf-
                                                                                     eck = 5 Vierecke, 1 Vier-
                                                                                     eck = 4 Dreiecke, 1 Drei-
                                                                                     eck = 3 Kreise)
•   gleiche Wertigkeiten von 10E und          •   eintauschen, einordnen             Geld, Zehnerstangen
    1Z erkennen                                                                      und Einer
•   Zehnerüberschreitung                      •   Rechnen bis 20
•   Bündeln auf bildhafter Ebene              •   -                                  Eierkartons
•   Darstellen des Stellenwertsystems         •   -                                  Zahlenhaus, Stellen-
    (ZR 100)                                                                         wertspiele (z.B. abwech-
                                                                                     selndes Würfeln mit 9-
                                                                                     Augen-Würfel: Einsor-

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                              11
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                                                                       tieren in Wertetabelle;
                                                                                       höchste Zahl gewinnt),
                                                                                       Hundertertafel

3.3     Kompetenzbereich: Rechenoperationen in Zahlenräumen

Kompetenzen                                   Ideen für den Unterricht                 Beispiele / Materialien
Mathematische Grundkompetenzen
für Rechenoperationen
•     kann Ziffern lesen                      •   taktiles Erkunden, Lehrgänge         Fühlkarten, Ziffernlehr-
                                                  durchführen                          gänge, Ziffernpuzzle,
                                                                                       Ziffernteppich, Ziffern-
                                                                                       karten, Zahlen in der
                                                                                       Umwelt
•     kann Ziffern schreiben                  •   taktiles Erkunden, Lehrgänge         Fühlkarten, Ziffernlehr-
                                                  durchführen, im Sand spuren          gänge, Ziffernpuzzle,
                                                                                       Ziffernteppich, Ziffern-
                                                                                       karten
•     kennt das Rechenzeichen „+“ und         •   Zusammenlegen, Hinzulegen, z.B.      Verwendung von kon-
      dessen Bedeutung                            in Form von Rechengeschichten,       kretem Anschauungs-
                                                  Malen, Stempeln, Kleben              material
•     kennt das Rechenzeichen „-„ und         •   Rechengeschichten, konkretes         Verwendung von kon-
      dessen Bedeutung                            Wegnehmen und Durchstreichen         kretem Anschauungs-
                                                  üben                                 material
•     kennt die Symbole > < =                 •   konkrete Mengen vergleichen          Abzählmaterialien, das
                                                                                       Krokodil
•     hat die mathematische Bedeutung         •   -
      des „=“ erfasst
•     kennt das Rechenzeichen „Mal“           •   Konkretes Handeln mit Gegen-
                                                  ständen, z.B. mehrmals die glei-
                                                  che Menge an Legosteinen holen
                                              •   Multiplikation als fortschreitende
                                                  Addition darstellen
•     kennt das Rechenzeichen „geteilt        •   konkretes Handeln mit Gegen-
      durch“                                      ständen, z.B. mehrmals die glei-
                                                  che Menge an Legosteinen holen
                                              •   Multiplikation als fortschreitende
                                                  Addition darstellen
Zahlen und Zahlenfolgen im Zahlen-
raum bis 10
•     kann Mengen und Zahlen einan-           •   Zuordnung von alltäglichen Men-      eigener Körper, Realge-
      der zuordnen                                gen, z.B. 2 Arme, 2 Beine, Auto 4    genstände, Fotos

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                   12
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                                  Räder, Hand hat 5 Finger, die Wo-
                                                  che hat 7 Tage etc.
•   kann Mengen bis 10 durch Abzäh-           •   s.o.                                s.o.
    len bestimmen
•   kann vorwärts und rückwärts zäh-          •   Abzählverse                         Realgegenstände, Re-
    len                                       •   Zählen von Objekten durch Ver-      chenplättchen etc.
                                                  schieben, Antippen oder Zeigen
•   kann Nachbarzahlen bestimmen              •   -                                   Zahlenstrahl
•   kann Mengen bis 5 zerlegen                •   Arbeit mit Schüttelbox,             Schüttelbox, Süßigkeiten
                                              •   mathematische Sachverhalte der
                                                  Umwelt erkennen, Süßigkeiten
                                                  aufteilen,
                                              •   Aufgaben im Hauswirtschaftsun-
                                                  terricht
•   kann Mengen bis 10 zerlegen               •   s.o.                                s.o.
Addition und Subtraktion im ZR bis
10
•   kann Additionsaufgaben durch              •   Entwurf einfacher Handlungsab-      Realgegenstände, Per-
    Abzählen lösen                                läufe, bei denen etwas hinzuge-     sonen
                                                  fügt wird oder Personen hinzu-
                                                  kommen
•   kann Subtraktionsaufgaben durch           •   Entwurf einfacher Handlungsab-      Realgegenstände, Per-
    Abzählen lösen                                läufe, bei denen etwas wegge-       sonen
                                                  nommen wird oder Personen
                                                  weggehen
•   kann sich auf wechselnde Rechen-          •   Rechenoperationen mischen, z.B.:    Personen, Realgegen-
    zeichen einstellen                            Auf dem Schulhof sind zwei Kin-     stände
                                                  der, es kommen 3 hinzu und 1
                                                  Kind geht wieder...
•   kann Additionsaufgaben mit Hilfe          •   Vermittlung von „Königsaufga-       Cuisenaire-Stäbe
    mathematischer Strategien (Kopf-              ben“ zur Vereinfachung, z..B.
    rechnen) lösen                                „Partnerzahlen“
•   kann Subtraktionsaufgaben mit             •   s.o.                                s.o.
    Hilfe mathematischer Strategien
    (Kopfrechnen) lösen
•   kann Ergänzungsaufgaben lösen             •   s.o.                                s.o.
•   kann Tauschaufgaben als Rechen-           •   Austauschen der Summanden           Rechenplättchen
    hilfe nutzen                                  üben, anhand von Realgegenstän-
                                                  den
•   kann Umkehraufgaben als Re-               •   Veranschaulichung von Umkehr-       verschiedenfarbige Re-
    chenhilfe nutzen                              aufgaben, z.B. durch verschieden-   chenplättchen, Rechen-

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                13
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                                  farbige Rechenplättchen                schieber etc.
•   beherrscht den ordinalen Aspekt           •   z.B. Bundesligatabelle lesen, im
    der Zahlen (Position des Elements             Sportunterricht: Wettspiele, 1., 2.,
    innerhalb einer Menge)                        3., Platz
Addition und Subtraktion im ZR bis
20
•   kann Mengen bis 20 durch Abzäh-           •   Zuordnung von Kennzahlen der           Realgegenstände, Fotos
    len bestimmen                                 Alltagswelt, z.B. 10 Finger, Zehen,    etc.
                                                  11 Fußballspieler etc.
•   kann vorwärts und rückwärts zäh-          •   Abzählverse,                           Realgegenstände, Re-
    len                                       •   Zählen von Objekten durch Ver-         chenplättchen etc.
                                                  schieben, Antippen oder Zeigen
•   kann Zahlenreihen fortsetzen              •   Abzählverse,                           Realgegenstände, Re-
                                              •   Zählen in Zweierschritten, Dreier-     chenplättchen
                                                  schritten etc.
•   kann Nachbarzahlen bestimmen              •   -                                      Zahlenstrahl
•   kann Mengen vergleichen                   •   Anzahlen von konkreten Materia-        Bauklötze, Legosteine
                                                  lien vergleichen                       etc.
•   kann Zehnermengen bündeln                 •   Mengen einkreisen, Strichlisten        Wasserkästen, Punkt-
                                                                                         muster
•   kann Mengen in Zehner und Einer           •   Zehner und Einer einkreisen            Cuisinaire-Stäbe
    zerlegen
Rechenoperationen ohne Zeh-
nerübergang im ZR bis 20
•   kann Additionsaufgaben durch              •   Entwurf einfacher Handlungsab-
    Abzählen lösen                                läufe, bei denen etwas hinzuge-
                                                  fügt wird oder Personen hinzu-
                                                  kommen
•   kann Subtraktionsaufgaben durch           •   Entwurf einfacher Handlungsab-
    Abzählen lösen                                läufe, bei denen etwas wegge-
                                                  nommen wird oder Personen
                                                  weggehen
•   beherrscht die additive Ergänzung         •   konkrete Mengen oder zwei bild-        Steckwürfel, numerische
                                                  haft dargestellte Mengen zusam-        Stangen, Cuisinaire-
                                                  menfassen                              Stäbe
•   beherrscht die subtraktive Ergän-         •   konkrete Mengen oder zwei bild-        s.o.
    zung                                          haft dargestellte Mengen vonei-
                                                  nander abziehen
•   kann Additionsaufgaben mit Hilfe          •   Ergänzungsaufgaben, Partnerzah-
    mathematischer Strategien (Kopf-              len,
    rechnen(lösen))                           •   dekadische Analogien erkennen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                   14
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

                                                  und als Rechenvereinfachung nut-
                                                  zen (z.B. 3+4 = 7 und 13+4= 17)
Rechenoperationen mit Zehnerüber-
gang im ZR bis 20
•   kann Additionsaufgaben durch              •   Entwurf einfacher Handlungsab-      Additionsaufgaben
    Abzählen lösen                                läufe, bei denen etwas hinzuge-     schrittweise errechnen:
                                                  fügt wird oder Personen hinzu-      8+6=8+2+4=10+4=14
                                                  kommen
•   löst Additionsaufgaben durch              •   Entwurf einfacher Handlungsab-
    korrektes Aufteilen der Mengen                läufe, bei denen etwas wegge-
                                                  nommen wird oder Personen
                                                  weggehen
•   beherrscht die additive Ergänzung         •   konkrete Mengen oder zwei bild-     Steckwürfel, numerische
                                                  haft dargestellte Mengen zusam-     Stangen, Cuisinaire-
                                                  menfassen                           Stäbe
•   kann Subtraktionsaufgaben durch           •   Entwurf einfacher Handlungsab-
    Abzählen lösen                                läufe, bei denen etwas wegge-
                                                  nommen wird oder Personen
                                                  weggehen
•   löst Subtraktionsaufgaben durch           •   Zahlzerlegung, schrittweise Rech-
    korrektes Aufteilen der Mengen                nen, etc.
•   beherrscht die subtraktive Ergän-         •   Konkrete Mengen oder zwei bild-
    zung                                          haft dargestellte Mengen vonei-
                                                  nander abziehen
Addition und Subtraktion im Zahlen-
raum bis 100
•   kann vorwärts- und rückwärts              •   Zählen bis 100 automatisieren,      Hundertertafel
    zählen                                        Nachbarzahlen finden, Zahlen der
                                                  Größe nach ordnen
•   kann Zahlenreihen fortsetzen              •   s.o.
•   kann Nachbarzahlen bestimmen              •   s.o.
•   kann Mengen vergleichen                   •   Anzahlen von konkreten und bild-
                                                  lich dargestellten Mengen und
                                                  Materialien vergleichen
•   kann Zehnermengen bündeln                 •   Mengen einkreisen, Strichlisten
•   kann in Zehnerschritten zählen            •   ganze Zehner addieren, dekadi-      Dekadische Analogien:
                                                  sche Analogien erkennen             3+3=5
                                                                                      30+20=50
•   kann Nachbarzehner bestimmen              •   s.o.
•   kann Mengen in Zehner und Einer           •   Zehner und Einer einkreisen
    zerlegen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                15
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Rechenoperationen ohne Zeh-
nerübergang
•   beherrscht die Addition von Zeh-          •   s.o.
    nern
•   beherrscht die Addition von Zeh-          •   Bündelung in Zehner und Einer      Stellenwerttafel
    nern und Einern
•   beherrscht die Addition von Zeh-          •   Bündelung in Zehner und Einer      s.o.
    ner-Einern und Einern
•   beherrscht die Addition von Zeh-          •   Bündelung in Zehner und Einer      s.o.
    ner-Einern und Zehnern
•   beherrscht die Addition von Zeh-          •   Bündelung in Zehner und Einer      s.o.
    ner-Einern und Zehner-Einern
•   kann Additionsaufgaben durch              •   s.o.
    Abzählen lösen
•   löst Additionsaufgaben mit Hilfe          •   s.o.
    mathematischer Strategien
•   beherrscht die additive Ergänzung         •   s.o.
    innerhalb des Zehners
•   kann auf den folgenden Zehner             •   s.o.
    ergänzen
•   beherrscht die Subtraktion von            •   s.o.
    Zehnern
•   beherrscht die Subtraktion von            •   s.o.
    Zehnern und Einern
•   beherrscht die Subtraktion von            •   s.o.
    Zehner-Einern und Einern
•   beherrscht die Subtraktion von            •   s.o.
    Zehner-Einern und Zehnern
•   beherrscht die Subtraktion von            •   s.o.
    Zehner-Einern und Zehner-Einern
•   kann Subtraktionsaufgaben durch           •   s.o.
    Abzählen lösen
•   löst Subtraktionsaufgaben mit             •   s.o.
    Hilfe mathematischer Strategien
    lösen
•   beherrscht die subtraktive Ergän-         •   s.o.
    zung innerhalb des Zehners
•   kann auf den vorherigen Zehner            •   s.o.
    reduzieren

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                          16
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   kann vom vollen Zehner wegneh-            •   s.o.
    men
Rechenoperationen mit Zehnerüber-
gang
•   kann Additionsaufgaben durch              •   -
    Abzählen lösen
•   kann Subtraktionsaufgaben durch           •   -
    Abzählen lösen
•   beherrscht die Addition von Zeh-          •   -
    nern
•   beherrscht die Addition von Zeh-          •   -
    nern und Einern
•   beherrscht die Subtraktion von            •   -
    Zehnern und Einern
•   beherrscht die Addition von Zeh-          •   -
    ner-Einern und Einern
•   beherrscht die Subtraktion von            •   -
    Zehner-Einern und Einern
•   beherrscht die Addition von Zeh-          •   -
    ner-Einern und Zehnern
•   beherrscht die Subtraktion von            •   -
    Zehner-Einern und Zehnern
•   beherrscht die Addition von Zeh-          •   -
    ner-Einern und Zehner-Einern
•   beherrscht die Subtraktion von            •   -
    Zehner-Einern und Zehner-Einern
•   kann Additionsaufgaben durch              •   -
    korrektes Aufteilen der Mengen
    lösen
•   kann Subtraktionsaufgaben durch           •   -
    korrektes Aufteilen der Mengen
    lösen
•   beherrscht die additive Ergänzung         •   -
    innerhalb des Zehners
•   beherrscht die subtraktive Ergän-         •   -
    zung innerhalb des Zehners
Malnehmen und Teilen
•   kann aus einer Additionsaufgabe           •   Verdopplung als einfachste Form    Anzahl von Keksen oder
    eine Multiplikationsaufgabe er-               der Multiplikation kennen          Murmeln verdoppeln
    stellen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                            17
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   erstellt zu einer Multiplikations-        •   Multiplikation durch mehrmaliges     Viermal zum Bällchen-
    aufgabe eine Additionsaufgabe                 Dazulegen von gleichmächtigen        bad gehen und jedes
                                                  Mengen erfassen                      Mal zwei Bälle holen
•   kann aus einer vorgegebenen               •   -
    strukturierten Menge Multiplika-
    tionsaufgaben bilden
•   kann eine Multiplikationsaufgabe          •   Abbildungen von Mengen durch         In jede der drei Dosen
    mit Plättchen nachlegen                       mehrmalige Produktion gleich-        drei Plättchen legen
                                                  mächtiger Mengen vervielfachen       (3x3)
•   kann Multiplikationsaufgaben              •   das Rechenzeichen „x“ und und „      Arbeitsblatt, Arbeitsheft,
    verschriftlichen                              .“ als Symbol für die Vervielfa-     Symbole einsetzen
                                                  chung von Mengen verstehen und
                                                  verwenden
•   kann Gesamtmengen in gleiche              •   verteilt Elemente von Mengen in      Acht Äpfel gerecht auf
    Teilmengen teilen                             eine vorgegebene Anzahl von          vier Kinder verteilen
                                                  Teilmengen
•   findet zu einer Gesamtmenge               •   verteilt Elemente von Mengen in      Zehn Muggelsteine auf-
    verschiedene Aufteilmöglichkei-               eine selbstgewählte Anzahl von       teilen (auf 5 Schalen =2,
    ten                                           Teilmengen                           auf 2 Schalen =5)
•   kann Divisionsaufgaben verschrift-        •   das Rechenzeichen „:“ als Symbol     Arbeitsblatt, Arbeitsheft,
    lichen                                        für die Vervielfachung von Men-      Symbole einsetzen
                                                  gen verstehen und verwenden
•   kann den Zusammenhang zwi-                •   verstehen, dass es zu jeder Multi-   Arbeitsblätter, Plätt-
    schen Multiplikations- und Divisi-            plikationsaufgabe eine passende      chen, Muggelsteine etc.
    onsaufgaben erfassen                          Divisionsaufgabe gibt
•   errechnet sich 1x1 Reihen selbst-         •   -
    ständig
•   kennt die 1x1 Reihe mit 2 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 10 aus-           •   -
    wendig
•   kennt die 1x1 Reihe mit 5 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 4 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 8 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 3 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 6 aus-            •   -
    wendig

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                  18
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   kennt die 1x1 Reihe mit 9 aus-            •   -
    wendig
•   kennt die 1x1 Reihe mit 7 aus-            •   -
    wendig
•   löst Ergänzungsaufgaben im Be-            •   Beherrschung der Multiplikations-   Arbeitsblätter, 100er-
    reich Multiplikation / Division               reihen im Zahlenraum 1-10           Tafel
•   kann gemischte Übungsaufgaben             •   s.o.                                s.o.
    mit den erarbeiteten 1x1 Reihen
    selbstständig lösen
•   kann die Verwandtschaft zwi-              •   s.o.                                s.o.
    schen den 1x1 Reihen, z.B. 2, 4
    und 8 erkennen
•   kann Sachaufgaben in Rechenope-           •   -
    rationen umsetzen
•   weiß, dass die Multiplikation eine        •   -
    verkürzte Addition ist
•   kann Mengen im kleinen 1x1 mit            •   die Division mit Rest kennen        neun Kinder werden in
    Rest verteilen                                                                    Zweiergruppen aufge-
                                                                                      teilt; „9:2= 4 R1“
ZR bis 1000
•   kennt die Zahlwortreihe von 1 bis         •   Transferleistung der 100er Reihe    Zahlenstrahl
    1000                                          auf den ZR bis 1000
•   kann vorwärts und rückwärts wei-          •   Kenntnis und sichere Beherr-        abzählen lassen, Vor-
    terzählen                                     schung der Zahlwortreihe bis 1000   gänger-Nachfolger,
                                                                                      Partnerzahlen
•   kann Nachbarzahlen bestimmen              •   Kenntnis und sichere Beherr-        Vorgänger-Nachfolger,
                                                  schung der Zahlwortreihe bis 1000   Partnerzahlen
•   kann die Zahlen im ZR bis 1000            •   -
    lesen und schreiben
•   Kann Mengen vergleichen                   •   -
•   beherrscht die Begriffe Einer,            •   Darstellungsweise des Stellen-      Ergebnisse des konkre-
    Zehner, Hunderter und Tausender               wertsystems kennen (Tausender-      ten Bündelns in einer
    im Dekadensystem                              Hunderter-Zehner- Einer)            Stellenwerttafel notie-
                                                                                      ren: 1Karton, 2 Palet-
                                                                                      ten, 2 Eierschachteln, 4
                                                                                      Eier (1 T, 2H, 2 Z, 4 E =
                                                                                      1224)
•   kann Ziffern und Zahlen in das            •   -
    Zahlenhaus einordnen
•   beherrscht die Addition im ZR bis         •   -                                   100er Blöcke
    1000 ohne Übergang

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                 19
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   beherrscht die Subtraktion im ZR          •   -
    bis 1000 ohne Übergang
•   beherrscht die Addition im ZR bis         •   -
    1000 mit Übergang
•   beherrscht die Subtraktion im ZR          •   -
    bis 1000 mit Übergang
•   kann im erweiterten ZR rechnen            •   -
    (z.B. 100.000)
•   beherrscht den Umgang mit dem             •   -
    Taschenrechner
Schriftliche Addition
•   beherrscht die Addition von zwei          •   -
    Summanden ohne Übertrag
•   beherrscht die Addition von zwei          •   -
    Summanden mit Übertrag
Schriftliche Subtraktion
•   beherrscht die Subtraktion von            •   -
    zwei Summanden ohne Übertrag
•   beherrscht die Subtraktion von            •   -
    zwei Summanden mit Übertrag
Schriftliche Multiplikation
•   beherrscht die schriftliche Multi-        •   -
    plikation mit einstelligem Multi-
    plikator ohne Behalteziffer
•   beherrscht die schriftliche Multi-        •   -
    plikation mit einstelligem Multi-
    plikator mit Behalteziffer
Multiplikation mit mehrstelligem
Multiplikator
•   beherrscht die Multiplikation mit         •   -
    mehrstelligem Multiplikator
•   beherrscht die Multiplikation mit         •   -
    mehrstelligem Multiplikator mit
    mindestens zwei Behalteziffern
Schriftliche Division
•   beherrscht die schriftliche Division      •   -
    mit einstelligem Divisor
•   beherrscht die schriftliche Division      •   -
    mit einstelligem Divisor mit Rest

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                       20
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   beherrscht die schriftliche Division      •   -
    mit mehrstelligem Divisor
•   beherrscht die schriftliche Division      •   -
    mit mehrstelligem Divisor mit Rest
Umgang mit Brüchen und Dezimal-
zahlen
•   kann den Bruch als Teil eines Gan-        •   konkretes Aufteilen von realen     Pizza, Kuchen, Apfel,
    zen definieren                                Gegenständen                       Schokolade
•   kennt die Bestimmungsstücke               •   .
    eines Bruches (Zähler, Nenner,
    Bruchstrich)
•   kann Bruchteile benennen                  •   s.o.                               s.o.
•   kann Bruchteile auf verschiedene          •   z.B. Tortenmodell, geometrische    Messbecher, Tasse, Löf-
    Arten visualisieren                           Formen                             fel
•   Kann Bruchzahlen lesen und                •   -
    schreiben
•   kann Brüche erweitern                     •   -
•   kann Brüche kürzen                        •   -
•   kann Brüche multiplizieren                •   -
•   kann Brüche dividieren                    •   -
•   kann gleichnamige Brüche addie-           •   -
    ren
•   kann gleichnamige Brüche subtra-          •   -
    hieren
•   erkennt die Gleichwertigkeit von          •   z.B. 2/4 entspricht 1/2            Kuchenstücke
    Brüchen
•   kann Brüche auf einem langen              •   -
    Bruchstrich kürzen
•   kann unechte Brüche in gemischte          •   -
    Zahlen verwandeln
•   kann gemischte Zahlen in unechte          •   -
    Brüche verwandeln
•   kann ungleichnamige Brüche ad-            •   -
    dieren
•   kann ungleichnamige Brüche sub-           •   -
    trahieren
•   kann Dezimalzahlen lesen und              •   -
    schreiben

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               21
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   kann aus Brüchen Dezimalzahlen            •   -
    entwickeln
•   kann Brüchen Dezimalzahlen zu-            •   -
    ordnen
•   kann Dezimalzahlen Brüchen zu-            •   -
    ordnen
•   kann gemischte Brüche in Dezi-            •   -
    malzahlen umwandeln
•   kann Dezimalzahlen in gemischte           •   -
    Brüche umwandeln
Einfache Statistiken
•   kann graphische Darstellungen             •   z.B. Balkendiagramme, Säulendia-     Wahlergebnisse bespre-
    lesen                                         gramme, Tortenmodelle, Kurven        chen, Temperaturver-
                                                                                       gleiche etc.
•   kann tabellarische Darstellungen          •   Regionalligatabelle                  Vergleiche von Tabel-
    lesen                                                                              lenpositionen
Sachrechnen
•   kann Zahlen einer Aufgabe den             •   Situationen erfahren, beobachten     Textaufgaben
    operativen Wert zuordnen                      und daraus die relevanten Zahlen
                                                  entnehmen
•   kann Mengen verdoppeln und                •   z.B. Hauswirtschaftsunterricht,      Mengenangaben in Re-
    halbieren                                     Rechnen mit Geld, Gewicht, Tem-      zepten verdoppeln,
                                                  peratur, Fläche, Volumen             beim Einkauf etc.
•   kann aus Sachaufgaben (Bilderfol-         •   „+“ und, dazu, zusammen; „-“         Bildmaterial
    gen) Operationen entwickeln und               wegnehmen, bezahlen, verschen-
    sprachlich fassen                             ken; „x“ jeder, je; „:“ verteilen,
                                                  aufteilen
•   kann aus Sachaufgaben (Text)              •   „+“ und, dazu, zusammen; „-“         Textaufgaben
    Operationen entwickeln und                    wegnehmen, bezahlen, verschen-
    sprachlich fassen                             ken; „.“ jeder, je; „:“ verteilen,
                                                  aufteilen
•   kann Sachaufgaben zur schriftli-          •   s.o.
    chen Addition lösen
•   kann Sachaufgaben zur schriftli-          •   s.o.
    chen Subtraktion lösen
•   kann Sachaufgaben zu Euro und             •   -
    Cent lösen
•   kann Sachaufgaben zur schriftli-          •   s.o.
    chen Multiplikation lösen
•   kann Sachaufgaben mit Längen              •   s.o.

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                 22
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

      lösen
•     kann Sachaufgaben mit Gewich-           •   s.o.
      ten lösen
•     kann Sachaufgaben mit Zeiten            •   s.o.
      lösen
•     kann Sachaufgaben zur schriftli-        •   s.o.
      chen Division lösen
•     kann Sachaufgaben mit Brüchen           •   s.o.
      lösen
•     kann den Bruch als Teil eines Gan-      •   konkretes Aufteilen von realen     Pizza, Kuchen, Apfel,
      zen definieren                              Gegenständen                       Schokolade
•     kennt die Bestimmungsstücke             •   -
      eines Bruches (Zähler, Nenner,
      Bruchstrich)

3.4     Kompetenzbereich: Größen

Kompetenzen                                   Ideen für den Unterricht               Beispiele / Materialien
Geld
•     Euro- und Cent-Münzen aus ver-          •   -
      schiedenen Wertmarken anderer
      Münzen herausfinden
•     Aussehen der Münzen und Schei-          •   Memory mit Abbildung von Vor-
      ne genau kennen und unterschei-             der- und Rückseite
      den
•     Werte der Münzen benennen und           •   sortieren
      unterscheiden                           •   blind ertasten
•     Geldwerte der Münzen benennen           •   -
      und unterscheiden
•     Münzen nach Euro und Cent sor-          •   -
      tieren
•     die entsprechenden Ziffern in           •   -
      Abbildungen von unbeschrifteten
      Münzen eintragen
Kaufkraft
•     Münzen und Scheine ihrem Wert           •   -
      entsprechend in einer Reihe ord-
      nen
•     den Wert der einzelnen Münzen           •   Was kann ich für 1 € kaufen?
      und Scheine veranschaulichen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               23
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   den Wert von Waren schätzen               •   Die CD kostet ungefähr…
Geld zählen
•   Geldmünzen und –scheine zählen            •   -
•   Strategien für das Zählen entwi-          •   sortieren, gruppieren mit Rest,
    ckeln                                         notieren
Geld wechseln
•   wertgleiche Geldbeträge herstel-          •   -
    len
•   die Unabhängigkeit des Geldwer-           •   -
    tes von der Anzahl der Münzen
    erkennen
•   strukturieren                             •   -
•   Geldbeträge in Stellentafeln ein-         •   -
    tragen
•   vorgegebene Preise mit Scheinen           •   -
    und Münzen legen
•   Kommaschreibweise anwenden                •   -
Geldbeträge runden
•   Geldbeträge aufrunden                     •   99 € sind ungefähr 100 €
•   Geldbeträge auf den nächsten              •   -
    vollen Euro aufrunden
Mit Geld rechnen
•   Preise addieren                           •   Ein Eis kostet…. Eine Bratwurst
                                                  kostet... Zusammen sind das...
•   mehrere Preise mit Hilfe der              •   -
    schriftlichen Addition zusammen-
    zählen
•   Wechselgeld berechnen                     •   -
•   Wechselgeld durch Ergänzen der            •   -
    Geldbeträge oder schriftliche Sub-
    traktion berechnen
Länge
•   Längenvergleich                           •   Zwei längendominante Gegen-        Trommelschlegel und
                                                  stände miteinander vergleichen     Kerze
                                              •   sachgerechte Bezeichnungen         länger, kürzer, gleich
                                                  verwenden                          lang
                                              •   gleichlange Paare aus einer Men-
                                                  ge längendominanter Gegenstän-
                                                  de herausfinden

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                24
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   Längenmessung mit Hilfe von               •   mit selbstgewählten Maßeinhei-
    Repräsentanten                                ten messen
                                              •   Körpermaße messen                    Fingerbreite, Spanne,
                                                                                       Fuß, Länge eines Schrit-
                                                                                       tes,
                                              •   die Notwendigkeit normierter         Vergleichen der indivi-
                                                  Messgeräte erfahren                  duellen Messergebnisse

•   Längenmessung mit standardisier-          •   Lineal und Maßband als Messge-       cm als verkürzte
    ten Einheiten: cm und mm                      räte kennen lernen                   Schreibweise bei Län-
                                                                                       genangaben verwenden,
                                                                                       ein Lineal herstellen
•   vorgegebene Längen mit dem                •   -
    Lineal abmessen und miteinander
    vergleichen
•   Längen verschiedener Gegenstän-           •   -
    de schätzen und nachmessen
•   „m“ als verkürzte Schreibwiese für        •   -
    Längenangaben verwenden
•   den Zusammenhang zwischen                 •   100cm = 1m
    „cm“ und „m“ kennen
•   Kommaschreibweise bei Meter-              •   -
    angaben kennen
•   Größe von MitschülerInnen mes-            •   -
    sen und in einer Tabelle erfassen
Andere Längeneinheiten
•   „km“ als verkürzte Schreibweise           •   Kilometerangaben auf Straßen-
    einer Längenangabe verwenden                  schildern und Straßenkarten lesen
•   den Zusammenhang zwischen                 •   -
    „km“ und „m“ kennen
•   die Länge von „km“ veranschauli-          •   1 km gehen, Schritte zählen
    chen
•   „mm“ als verkürzte Schreibweise           •   Millimeterangaben in der Umwelt
    einer Längenangabe verwenden                  lesen: Länge und Breiten von
                                                  Schrauben, Profiltiefe von Reifen,
                                                  Strichbreite von Faserstiften
•   Millimetereinheiten auf dem Li-           •   -
    neal und Maßband erkennen
•   den Zusammenhang zwischen                 •   die Länge von „mm“ veranschauli-
    „mm“ und „cm“ kennen                          chen; Papierblätter zu einer Sta-
                                                  pelhöhe von 1 mm aufeinanderle-
                                                  gen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               25
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Temperatur
•     Temperaturvergleich                     •   Temperaturunterschiede im Ver-      Becher mit unterschied-
                                                  gleich ermitteln                    lich warmem Wasser
                                              •   Temperaturgleichheit ermitteln
                                              •   sachgerechte Bezeichnung ken-
                                                  nen: wärmer, kälter, gleich warm
                                                  oder kalt
•     Temperaturmessung                       •   das Thermometer als Instrument
                                                  zur Messung von Temperatur
                                                  kennen
                                              •   °C als verkürzte Schreibweise für
                                                  Temperaturangaben verwenden
                                              •   Temperaturangaben in der Um-        Wetterkarte
                                                  welt lesen
                                              •   Lufttemperatur im Jahreslauf
                                                  messen und notieren
                                              •   Temperatur verschiedener Flüs-      Schwimmbad
                                                  sigkeiten messen
                                              •   Fieberthermometer als spezielles    eigene Körpertempera-
                                                  Messgerät zur Bestimmung der        tur messen, Grenze zum
                                                  Körpertemperatur einsetzen          Fieber kennen
                                              •   wissen, wo hohe Temperaturen        Backofen, Herd, Ton-
                                                  herrschen und welche Gefahren       ofen, Heizung
                                                  davon ausgehen
•     0 Grad und Minusgrade                   •   mit den Besonderheiten der Tem-
                                                  peraturmessung vertraut sein:
                                                  Minus- und Plusgrade
                                              •   Erfahrungen mit der Temperatur-     Wasser gefriert, es
                                                  angabe 0 Grad machen                schneit
                                              •   Erfahrung mit negativen Tempera-    im Winter fällt die Tem-
                                                  turangaben machen                   peratur unter 0 Grad, im
                                                                                      Gefrierschrank werden
                                                                                      es bis zu -18 Grad

3.5     Kompetenzbereich: Gewicht

Kompetenzen                                   Ideen für den Unterricht                Beispiele / Materialien
Gewichtsvergleich                                                                     Kegel, Kugeln, Klötz-
                                                                                      chen, Würfel, Lebens-
                                                                                      mittel
•     Gewichtsunterschiede im Ver-            •   -
      gleich zweier Gegenstände ermit-
      teln
•     sachgerechte Bezeichnungen              •   -

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                26
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

    verwenden: schwerer. leichter,
    gleich schwer
•   etwa gleich schwere Paare aus             •
    einer Menge von Gegenständen
    herausfinden
•   Kommaschreibweise bei der An-             •
    gabe von Gewichten verwenden
•   mit Gewichten rechnen                     •
•   eine Balkenwaage als Instrument           •                                      Kugeln aus Styropor.
    zur Bestimmung von Gewichtsun-                                                   Holz und Metall…
    terschieden kennen
•   das Gewicht gleicher Körper ver-          •
    gleichen, die aus unterschiedli-
    chen Materialien bestehen
•   Zuordnung einzelner Gewichtsan-           •
    gaben zu den entsprechenden
    Dingen (z.B. 1 kg Mehl, 500 g But-
    ter…)
•   Gewicht realistisch einschätzen           •   Vermutung anstellen und mit
                                                  einer Waage überprüfen; Verglei-
                                                  chen mit bekannten Größen und
                                                  Gewichten
Gewichtsmessung mit der standardi-
sierten Einheit Kilogramm
•   standardisierte Gewichtsangabe            •   Rezept im Hauswirtschaftsunter-
    „kg“ verwenden                                richt, einkaufen
•   standardisierte Gewichtsangabe            •   s.o.
    „g“ verwenden
•   „kg“ als gekürzte Schreibweise bei        •   -
    Gewichtsangaben verwenden
•   aus verschiedenen Gegenständen            •   Safttüte, Milchpackung
    jene herausfinden, die ein Kilo-
    gramm wiegen
•   mit der Balkenwaage und ge-               •   Mäppchen, Schulranzen
    normten Gewichten das Gewicht
    von Gegenständen aus dem Alltag
    bestimmen
•   eine Digitalwaage als Instrument          •   vorgegebene Mengen im Haus-
    zur Bestimmung des Gewichts                   wirtschaftsunterricht abwiegen
    kennen
•   das Körpergewicht von Mitschü-            •   -

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                              27
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

      lern bestimmen und in einer Ta-
      belle notieren
•     mit Gewichtsangaben rechnen             •   das Gewicht von Schülern mit
                                                  dem zulässigen Gesamtgewicht
                                                  eines Aufzugs vergleichen
Andere Gewichtseinheiten
•     „t“ als verkürzte Schreibweise bei      •   -
      Gewichtsangaben verwenden
•     das Gewicht von einer Tonne ver-        •   -                                   ein Mittelklasseauto
      anschaulichen
•     Gewichtsangaben in der Öffent-          •   -                                   an Brücken, Bussen,
      lichkeit lesen                                                                  Lastwagen, Zügen. Stra-
                                                                                      ßenbahnen, Schiffen
•     den Zusammenhang zwischen               •   -
      Tonne und Kilogramm kennen
      (1000kg = 1 t)

3.6     Kompetenzbereich: Fläche

Kompetenzen                                   Ideen für den Unterricht                Beispiele / Materialien
Flächenbegriff
•     Flächen in der Umgebung entde-          •   Fußballplatz, Parkflächen, Pau-
      cken                                        senhof
•     durch Schattenrisse flächige Ab-        •   verschiedene Körperteile, ver-
      bildungen herstellen                        schiedene Gegenstände
Flächenvergleich
•     die Größe zweier Flächen verglei-       •   zwei farbige Kartons durch Ausei-
      chen                                        nanderschneiden und Aufeinan-
                                                  derlegen
•     zwei farbige Flächen im Gitternetz      •   Auszählen der Quadrate
      vergleichen
•     Bezeichnungen sachgerecht ver-          •   -
      wenden: größer, kleiner, gleich
      groß
Flächenmessung mit Hilfe von stan-
dardisierten Repräsentanten
•     einen Quadratmeter aus Karton           •   -
      herstellen
•     „m²“als verkürzte Schreibweise          •   -
      bei Flächenangaben verwenden

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               28
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•     vorgegebene Flächen schätzen            •   -                                  Klassenzimmer, Garten,
      und durch Auslegen mit einzelnen                                               Tafel, Bett
      Quadratmetern messen
Flächenberechnung
•     rechteckige Flächen durch Multi-        •   -                                  Stoffmenge für das
      plikation der Länge mit der Breite                                             Schwarzlichttheater
      berechnen
•     Flächen berechnen und verglei-          •   -                                  Die Turnhalle mit dem
      chen                                                                           Pausenhof, das Klassen-
                                                                                     zimmer mit dem Lehrer-
                                                                                     zimmer

3.7     Kompetenzbereich: Volumen

Kompetenzen                                   Ideen für den Unterricht               Beispiele / Materialien
Hohlmaß / Volumen
•     das Hohlmaß als Raum verstehen,         •   -                                  Tasse, Kanne, Eimer
      in den etwas geschüttet oder ge-
      gossen werden kann
•     Unterschied zur Aufbewahrungs-          •   Wasser auf einen Tisch schütten;
      möglichkeit ohne Hohlraum erfah-            Wasser in einen Becher schütten
      ren
Vergleich von Flüssigkeitsmengen
•     die gleiche Menge Orangensaft in        •   zur Überprüfung Orangensaft in
      zwei unterschiedlichen Gläsern              zwei gleiche Gläser umschütten
      vergleichen
•     zwei Flüssigkeitsmengen in gleich       •   -
      großen Gläsern vergleichen
•     Bezeichnungen sachgerecht ver-          •   -
      wenden: mehr, weniger, gleich
      viel
Mengenbestimmung durch nicht
normierte Hohlmaße
•     die Menge Wasser in einem Eimer         •   acht Tassen, vier Messbecher
      bestimmen
•     Mengenangabe auf Rezepten               •   -
      lesen und verstehen
•     verschiedene Mengen schüttbarer         •   4 Teelöffel Zucker, 8 Esslöffel
      Substanzen mit Hilfe nicht nor-             Mehl
      mierter Hohlmaße erzeugen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                             29
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

Mengenbestimmung durch standar-
disierte Hohlmaße
•     „l“ als verkürzte Schreibweise bei      •   -
      Flüssigkeitsmengen verwenden
•     den Messbecher als Messgerät            •   -
      einsetzen
•     Markierungen am Messbecher              •   „½ l“, „¼ l“, „1/8 l“ lesen und ver-
      verwenden                                   stehen
•     Literangaben an Flaschen und            •   -
      Kartons durch Nachmessen über-
      prüfen
•     Kommaschreibweise bei der An-           •   0,5 l = ½ l; 0,75 l = 3/4 l
      gabe von Flüssigkeitsmengen
      kennen

3.8     Kompetenzbereich: Zeitraum, Uhr, Zeitmessung

Kompetenzen                                   Ideen für den Unterricht                   Beispiele / Materialien
Umgang mit Zeit
Anwendung und Verständnis der
Zeiteinheiten (stellt keine Reihenfol-
ge dar)
•     Sekunde                                 •   Entwicklung eines Zeitgefühls;         Sanduhr
                                                  Zeiträume abschätzen
•     Minute                                  •   Entwicklung eines Zeitgefühls;         Sanduhr, Stoppuhr
                                                  Zeiträume abschätzen
•     Stunde                                  •   Entwicklung eines Zeitgefühls;         Sanduhr, Stoppuhr
                                                  Zeiträume abschätzen
•     Tag                                     •   Tagesplanung erstellen, Stunden-       Sanduhr, Stoppuhr
                                                  plan
•     Woche                                   •   Stundenplan, Wochenübersicht
•     Monat                                   •   Kalender, Jahreszeiten                 Liedspiele
•     Jahr                                    •   Kalender, Jahreszeiten                 Liedspiele
•     Jahrzehnt                               •                                          verschiedene zeitge-
                                                                                         schichtliche Themen;
                                                                                         eigene Lebensgeschich-
                                                                                         te / Lebensgeschichte
                                                                                         von Verwandten
•     Jahrhundert                             •   -

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                 30
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•   Zeitdimensionen: Gegenwart,               •   -
    Vergangenheit, Zukunft
•   Anwendung allgemeiner zeitlicher          •   -
    Begriffe (z.B. bald immer, …)
Umgang mit der Uhr
Ablesen der analogen Uhr
•   in vollen Stunden                         •   -                                  Lernuhren; Klassenuh-
                                                                                     ren; eigene analoge
                                                                                     Armbanduhren; Ar-
                                                                                     beitsblätter
•   in halben Stunden                         •   -                                  s.o.
•   in viertel Stunden                        •   -                                  s.o.
•   in Minuten                                •   -                                  s.o.
•   10 Minuten vor                            •   -                                  s.o.
•   10 Minuten nach                           •   -                                  s.o.
•   5 Minuten vor                             •   -                                  s.o.
•   5 Minuten nach                            •   -                                  s.o.
•   alle übrigen Minuten                      •   -                                  s.o.
Ablesen der digitalen Uhr                                                            verschiedene Uhren mit
                                                                                     Digitalanzeige
Vergleich von digitalen und analogen                                                 Realgegenstand und ABs
Zeiten                                                                               mit Zuordnungsaufga-
                                                                                     ben
Rechnen mit Zeiten
•   in vollen Stunden                         •   -                                  Textaufgaben, Fahrplan-
                                                                                     aufgaben, Zeitdauer
                                                                                     (Filme, Hörspiele etc.);
                                                                                     Stundenplan; Zeit für
                                                                                     bestimmte Unterrichts-
                                                                                     phasen; Therapiezeiten
                                                                                     einhalten; abgesproche-
                                                                                     ne Zeiträume einhalten
•   in halben Stunden                         •   -                                  s.o.
•   in viertel Stunden                        •   -                                  s.o.
•   in Minuten                                •   -                                  s.o.
•   10 Minuten vor                            •   -                                  s.o.
•   10 Minuten nach                           •   -                                  s.o.
•   5 Minuten vor                             •   -                                  s.o.

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               31
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

•     5 Minuten nach                          •   -                                  s.o.
•     alle übrigen Minuten                    •   -                                  s.o.
•     ablesen der digitalen Uhr               •   -                                  s.o.

3.9     Kompetenzbereich: Geometrie

Kompetenzen                                   Ideen für den Unterricht               Beispiele / Materialien
Geometrische Flächenformen
•     findet Gemeinsamkeiten und Un-          •   Ecken und Kanten fühlen lassen,    Ecken, Kanten, rundes
      terschiede geometrischer Flächen-           1zu1-Zuordnung                     Brett, eckiges Brett
      formen                                                                         Fühlbeutel mit Dreieck,
                                                                                     Viereck, Kreis; auf einem
                                                                                     aufgemalten Viereck /
                                                                                     Dreieck von Ecke zu
                                                                                     Ecke springen; einen
                                                                                     Kreis ablaufen
•     zeigt Verständnis für die Begriffe      •   eine vorgegebene Flächenform
      „Dreieck“, Viereck“, und „Kreis“            finden
•     gebraucht die Begriffe „Dreieck“,       •   Flächenformen sachgemäß be-
      „Viereck“ und „Kreis“                       zeichnen
•     stellt geometrische Flächenfor-         •   Schablonieren, Falten, Schneiden
      men her
•     findet geometrische Flächenfor-         •   -                                  Runder Tisch, Tafel, um
      men in der Umwelt                                                              den runden Tisch oder
                                                                                     den eckigen Tisch laufen
•     legt vorgegebene Figuren und            •   -                                  Formenplättchen,
      Muster mit Formenplättchen                                                     konstruktive Dreiecke,
                                                                                     Formenstempel,
                                                                                     Tangram nach Vorlage
Geometrische Körperformen
•     findet Gemeinsamkeiten und Un-          •   runde Gegenstände rollen, mit      Bauklötze aus Holz,
      terschiede geometrischer Körper-            eckigen Gegenständen bauen         Schaumstoff, Lego- /
      formen                                  •   Mauern bauen aus Quadern           Duplo-Steine
                                              •   Spiele mit Bällen und Kugeln
•     zeigt Verständnis für die Begriffe      •   nach Vorgabe entsprechende
      „Kugel“, „Walze“, „Quader“ und              Körperform finden
      „Pyramide“
•     verwendet die Begriffe „Kugel“,         •   Körperformen sachgemäß be-
      „Walze“, „Quader“ und „Pyrami-              zeichnen
      de“
•     findet geometrische Körperfor-          •   -                                  Ball, Litfaßsäule, Kirch-

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                                   32
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

    men an Gegenständen der Um-                                                      turmspitze, Dosen,
    welt                                                                             Murmeln, verschiedene
                                                                                     Verpackungen
•   stellt geometrische Körperformen          •   -                                  Knetmasse, Kant- oder
    her                                                                              Rundhölzer sägen /
                                                                                     schneiden
•   stellt Figuren aus geometrischen          •   -
    Körperformen her
Symmetrie
•   stellt symmetrische Hälften durch         •   -
    Falten oder Reißen her
•   zeigt Verständnis für die Begriffe        •   symmetrische von nicht symmet-
    „Symmetrisch“ und „Symmetrie“                 rischen Figuren unterscheiden
•   verwendet die Begriffe „Symmet-           •   -
    risch“ und „Symmetrie“
•   findet Symmetrie am Körper an-            •   -
    derer oder am eigenen Körper
•   erkennt Symmetrie in der Umwelt           •   -                                  Pflanzenteile, Gebäude,
                                                                                     Buchstaben
•   ergänzt Figuren symmetrisch               •   -                                  Formenplättchen
                                                                                     Gitternetz

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                               33
PAUL-KRAEMER-SCHULE
Förderschule des Rhein-Erft-Kreises mit dem Förderschwerpunkt Geistige Entwicklung

4      LITERATUR

Zur Erstellung des nun entwickelten Curriculums wurde u.a. folgende Literatur gesichtet und inhaltlich ver-
wendet:
Bayerisches Staatsministerium für Unterricht und Kultus (Hrsg.): Lehrplan für den Förderschwerpunkt geis-
tige Entwicklung“, München 2003
Curriculum für das Fach Mathematik, Schule zum Römerturm, Bergheim
De Vries, Carin: Mathematik im Förderschwerpunkt Geistige Entwicklung, Verlag Modernes Lernen, 3. Auf-
lage 2014
Förderplan / Förderdiagnostik, Pestalozzi-Schule, Willich
Individuelle Lerndokumentation (ILD) – Bayern
IST-STAND-Erfassung, Don-Bosco-Schule, Erftstadt
Kerncurriculum für den Förderschwerpunkt Geistige Entwicklung, Kultusministerium Niedersachen

Paul-Kraemer-Schule, Curriculum Mathematik, Fassung 2018-02-25                                          34
Sie können auch lesen