Neuromonitoring Burkhard Simma Traunseeklausur Gmunden

Die Seite wird erstellt Ansgar-Maximilian Klemm
 
WEITER LESEN
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Neuromonitoring
Burkhard Simma

Traunseeklausur
Gmunden
Mai 2018
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Monitoring

ist die Beobachtung einer Erkrankung, eines Symptoms u/o eines (oder mehrerer)
medizinischen Parameters über die Zeit

…durch kontinuierlich gemessene Parameter durch einen Monitor oder Vitalzeichen
oder durch wiederholt durchgeführte Tests (z.B. Glucosemonitoring)
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Neuromonitoring

   Der kontinuierlich gemessene Hirndruck ist die essentielle Modalität…..

   Nach Jahren der enthusiastischen Anwendung/Forschung des Hirn-Monitorings (z.B.
   Gewebssauerstoff, Mikrodialyse, CBF, Transkranieller Doppler, V. jugularis Sättigung,
   NIRS) bleibt die Hirndruckmessung als robuste und einzige nur moderat invasive
   Modalität übrig, die auch von den meisten PICU realistischerweise durchgeführt werden
   kann

Tasker RC in Fuhrman and Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
NEURO - Monitoring

Kontinuierlich vs. intermittierend
Nicht-invasiv vs. invasiv
Validiert vs. experimentell

                 Klinische Untersuchung
                 Physiologisches Monitoring
                 Labor Analysen (Biomarker)
                 Bildgebung
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Monitoring und Pädiatrische Trauma Zentren

                                                                      Basel
                                                                      Bern
                                                                      Genf
                                                                      Lausanne
                                                                      Luzern
                                                                      St. Gallen
                                                                      Zürich

Level I Pädiatrisches Trauma Zentrum: Injury Severity Score >(12)16
(Hochspezialisierte Medizin, HSM; CH)
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Summe der Quadrate der drei hauptsächlich betroffenen Organe

Level I Pädiatrisches Trauma Zentrum: Injury Severity Score >(12)16
(Hochspezialisierte Medizin, HSM; CH)
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
ATC: adult trauma
MTX: mixed trauma   JAMA Surg, 2015
center
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
ATC: adult trauma
MTX: mixed trauma
center
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Klinische Untersuchung
   Glasgow Coma Scale (GCS) Score und Mortalität

    Bei Kindern jünger als 5a wurde eine ähnliche Relation zwischen GCS und Mortalität beobachet

Murphy S, J Neurotrauma 2017
Neuromonitoring Burkhard Simma Traunseeklausur Gmunden
Schweres Schädel Hirn Trauma

    Erst-Linie Interventionen

    HOB 30°
    Sedierung und Analgesie
    Anlage ICP Monitor –
               CSF Drainage
    Neuromuskuläre Blockade
    Hyperosmolare Therapie
    Normoventilation
    SpO2 >92%

Adelson PD. PCCM 2003;4:565; Carcillo JA. CCM 2006;34:S183
ICP Monitoring
ICP Messung ermöglicht
          Kalkulation des zerebralen Perfusionsdruckes (als therapeutische Zielgröße)
          Analyse der ICP Kurven
          Ableitung der zerebrovaskulären Druck Reaktivität und der
          Kompensatorischen Reserve

Nulllinie von ICP und arteriellem Druck auf gleicher Höhe:
Tragus des Ohres
ICP Kurvenanalyse – zerebrovaskuläre Druck Reaktivität

    Pressure reactivity (PRx) Index:
    Kalkulation des Korrelationskoeffizienten aus >40 Datenpunkten
    von arteriellem Druck (ABP) und ICP
               (Antwort des ICP auf spontane Änderungen des ABP)

    PRx: negativ oder nahe Null
               jeder Anstieg des ABP führt zu einer inversen Änderung
               des ICP: d.h. CBV normal

    Positiver Index: nicht-reaktives Gefäßbett

Tasker RC in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
ICP Kurvenanalyse

    Analyse der Frequenz der ICP Kurve
               Frequenz ist ähnlich der Herz- und Atemfrequenz und es gibt „slow waves"
               (3-0.3 Zyklen pro Minute)"

    Amplitude der Puls Welle
               (fundamental component)
               korreliert mit zerebralem Blutvolumen

Tasker RC in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
ICP Kurvenanalyse - Kompensatorische Reserve
     RAP index: Korrelationskoeffizienten (R) zwischen Pulse Amplitude (A) und mittlerem ICP (P)
     Index nahe Null: fehlende Synchronisation: d.h. Änderungen/Steigerung des Volumens führt nicht zu
     einem höheren ICP = good pressure-volume reserve.
     Index steigt +1: Änderung des Volumens erhöht ICP: kompensatorische Reserve ist gering

Tasker RC in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
ICP Kurvenanalyse - Kompensatorische Reserve
     RAP index: Korrelation Koeffizient (R) zwischen Pulse Amplitude (A) und mittleren ICP) (P)
     Index nahe Null: fehlende Synchronization: d.h. Änderungen/Steigerung des Volumes führt nicht zu
     einem höheren ICP = good pressure-volume reserve.
     Index steigt
              RAP +1:und
                      Änderung des Reactivity
                         Pressure  Volumen erhöht
                                              (PRx)ICP: kompensatorische Reserve ist gering
                                                     Index

                            „…are predictive of poor outcome in adults
                            may be useful in definition of optimal targets for CPP…“

                 Eine Studie bei Kindern/Jugendlichen n=21

Tasker RC in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Multizentrisch, n=324, >13a
ICP basierendes Protokoll vs. bildgestütztes und klinisches Protokoll

Endpunkte: Zeit Überleben, eingeschränktes Bewusstsein; funktioneller und kognitiver Status nach 6 Monaten

                                                                         ICP                 Imaging-clinical
                                                                                                 group
__________________________________________________________________________________________                             _

6 mo neuro status (points)                                               56                       53
6 mo mortality (%)                                                       39                       41
ICU stay (days)                                                          12                       9
Craniectomy (%)                                                          28                       30
Brain-specific treatments (days)                                         4.8                      3.4           .002
Hypertonic saline (%)                                                    58                       72            .008
any serious event (%)                                                    45                       46

BEST-TRIP: Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure
National Trauma Data Bank
Pediatric Health Information System database
n>3000 Kinder/Jugendliche

  Primäre Endpunkte: Krankenhaus Mortalität, Entlassung in Hospiz, oder neue Tracheostomie u/o Gastrostomie [GT]
Transcranieller Doppler (TCD)
       Messung der zerebralen Blutflussgeschwindigkeit
       Grenze: >100cm/sec zeigt Vasospasmus oder Hyperämie an
       Lindegaard Ratio: untersuchte A. cerebri media und ipsilaterale A. carot. int.
           >3 Vasospamus
Microdialyse
Wird platziert im rechten (nicht dominanten) Frontallappen oder
  ipsilateral der Läsion für Monitoring des Gewebes unter Risiko und zur Steuerung der Therapie
multiple Katheter sind eine Option, 100 KDa Membran

stündliche Messung von Glukose, Laktat, Pyruvat, Glycerol und Glutamaten

Wird sehr früh bei sekundären Schädigungen auffällig
Microdialyse

   Glukose:
Somatosensory evoked potentials (SSEP)
  134 adults, after cardiac arrest and hypothermia

  Clinical examination (p
Multimodales Neuromonitoring (MMM)
  Erwachsene Pat (n=27) mit niederem regionalem zerebralem Blutfluss (=Hypoperfusion im CT) vs.
  normalem Fluss
       - erhöhter ICP 30 vs 13%
       - PbtO2
NEURO - Monitoring

Kontinuierlich vs. intermittierend
Nicht-invasiv vs. invasiv
Validiert vs. experimentell

                 Klinische Untersuchung
                 Physiologisches Monitoring
                 Labor Analysen (Biomarker)
                 Bildgebung
Hypertones Kochsalz

              Ziel: Serum Sodium 155 mmol/L

 CCM 1998
Hypertones Kochsalz
Richtlinie für schweres SHT – Hypertones Kochsalz (HS)

3 Studien bei 121 pädiatrischen Patienten aus 2 Zentren

„Hypertonic saline should be considered for the
      - acute treatment of elevated intracranial pressure
              (evidence class II) and
      - use as a continuous infusion at the ICU (class III)”

Effektive akute Dosis : Bolus 3% HS: 3 ml/kg
                        kontinuierlich 3% HS: 0.1-1.0 ml/kg/h

Ziel: Serum Osmolalität
Biomarker

Harel A, 2016
Biomarker in Trauma und Kreislaufstillstand

Prout AJ, 2017
Harel A, 2016
PCCM 2009
NEURO - Monitoring

Kontinuierlich vs. intermittierend
Nicht-invasiv vs. invasiv
Validiert vs. experimentell

                 Klinische Untersuchung
                 Physiologisches Monitoring
                 Labor Analysen (Biomarker)
                 Bildgebung
Neuro - Bildgebung

ADC: Apparent Diffusion Coefficient
(Diffusionskoeffizient)
diffusion of water molecules to generate
contrast in MR images
     hohe ADC: vasogenes Ödem
     niedere ADC: zytotoxisches Ödem, Ischämie

Frontiers Neurol. 2015
Neuro - Bildgebung
  ADC: Normalwerte und Prognose

 Grenzwert: 650–700 × 10−6 mm2/sec

 Anteil des Gehirnvolumens mit einer ADC
relatives Volumen von Voxel (y-achse) mit einem ADC Wert unter dem definierten Grenzwert (x-Achse)

Rescuscitation 2016;100:18-24
ADC and NSE in cardiac arrest

©Scholefield B
Vielen Dank
Monitoring and Cognition
Your focus determines your reality

You see only what you know

Cognition depends on how you feel
Monitoring and Trauma Room

                             ©M.   Nance. CHOP, 2016
Monitoring and Trauma Room

                      ?

                             ©M.   Nance. CHOP, 2016
Monitoring and Trauma Room

                      ?

                             ©M.   Nance. CHOP, 2016
Monitoring and Trauma Room

                             ©M.   Nance. CHOP, 2016
Monitoring and Trauma Room

Your focus determines your reality -

                                       ©M.   Nance. CHOP, 2016
Monitoring and Cognition
Your focus determines your reality

You see only what you know

Cognition depends on how you feel
Diagnosis?
Diagnosis?
Do you notice anything unusual about this lung scan?
Harvard researchers found that 83% of radiologists didn‘t
 notice the gorilla in the top right portion of this image.
Monitoring and Cognition
Your focus determines your reality

You see only what you know

Cognition depends on how you feel
Why neuro-monitoring, even multi modality monitoring?

           •   Clinical exmination

           •   Understand pathophysiology
           •   Improve protocols and patient management
           •   Prognostication

           •   Monitoring and cognition
Cerebral Perfusion Pressure - Autoregulation

Perfusion-pressure - based

…MAP limits of autoregulation shift to the left
…may be lost in critically ill children                                                                    infants

                                                                                                           adults

…difference between the actual cerebral perfusion
       pressure and the lower limit of autoregulation
       auto regulatory reserve

                                                        Shoykhet M in Fuhrman & Zimmerman (eds). Peciatric Critical Care 5th ed 2017
Cerebral Perfusion Pressure - Autoregulation

Perfusion-pressure - based

…MAP limits of autoregulation shift to the left
…may be lost in critically ill children

…difference between the actual CPP
       and the lower limit of autoregulation
       auto regulatory reserve

                                                  LDF…Laser Doppler Flowmetry
Cerebral Perfusion Pressure - Autoregulatory reservere
Auto regulatory reserve
may change over time

Assessment
  • elevation of blood pressure by medication
  • transient hyperemia after carotid compression
  • to monitor the natural variation of blood pressure

                                                         Tasker RS in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Cerebral Blood Flow
... gray matter CBF reaches a plateau at 4 yrs of age
…white matter CBF also increases but not as significantly

32 weeks of gestation: 14 mL/100 g/min
Term:                   20
4-12yrs                 90-100
Adult                          50-60

                                         Shoykhet M in Fuhrman & Zimmerman (eds). Peciatric Critical Care 5th ed 2017
Cerebral Blood Flow - autoregulation
CBF depends on

pH-based

…CBF changes by 1 (-4)% per for every
    1 mmHg change in PaCO2 in the range
    of 20-100mmHg
… Hypercapnia causes cerebral vasodilatation,
    increases CBF and ICP

                                      Shoykhet M in Fuhrman & Zimmerman (eds). Peciatric Critical Care 5th ed 2017
Cerebral Blood Flow - autoregulation
CBF depends on

Oxygen-based

…CBF is constant when PaO2 is >60mmHg (pink curve)

…CBF increases (exponentially) when PaO2
References
Allen B eta al. Pediatr Crit Care Med 2014;15:62-70
Gupta AK, Hutchinson PJ, Fryer T, Al-Rawi PG, Parry DA, Minhas PS, Kett-White R, Kirkpatrick PJ,
Mathews JC, Downey S, Aigbirhio F, Clark J, Pickard JD, Menon DK. Measurement of brain tissue
oxygenation performed using positron emission tomography scanning to validate a novel monitoring
method. J Neurosurg. 2002 Feb;96(2):263-8.
Ushewokunze S, Sgouros S. Brain tissue oxygenation changes in children during the first 24 h following
head injury. Childs Nerv Syst. 2009 Mar;25(3):341-5
Bouzat P, Marques-Vidal P, Zerlauth J-B, et al. Accuracy of brain multimodal monitoring to detect cerebral
   hypoperfusion after traumatic brain injury. Crit Care Med 2015;43:445–52.
Oddo M, Levine JM, Mackenzie L, et al. Brain hypoxia is associated with short- term outcome after severe
   traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure.
   Neurosurgery 2011;69:1037–45
Kosty JA, Leroux PD, Levine J, et al. Brief report: a comparison of clinical and research practices in
   measuring cerebral perfusion pressure: a literature review and practitioner survey. Anesth Analg
   2013;117:694–8.
CSF volume: adult 150 mL (50% intracranial, 50% intraspinal)
              Newborn 50 mL
production through all age groups:
              0.15-0.3 mL/min
              9-18 mL/h=216-432 mL/d
Clinical examination
Glasgow Coma Scale (GCS) is a neurological scale which aims to give a reliable and objective way of
recording the conscious state of a person for initial as well as subsequent assessment. The initial indication
for use of the GCS was serial assessments of patients with traumatic brain injury[1] and coma for at least 6
hours in the neurosurgical ICU setting, GCS was initially used to assess level of consciousness after head
injury, and the scale is now used by first responders, EMS, nurses and doctors as being applicable to all
acute medical and trauma patients. In hospitals it is also used in monitoring chronic patients in intensive care.
GCS is used as part of several ICU scoring systems, including APACHE II, SAPS II, and SOFA, to assess the
status of the central nervous system, as it was designed for. though it is commonly used throughout hospital
departments
Individual elements as well as the sum of the score are important. Hence, the score is expressed in the form
"GCS 9 = E2 V4 M3 at 07:35“
false positiv: focal neurological signs
The GCS has come under pressure from some researchers who take issue with the scale's poor inter-rater
reliability and lack of prognostic utility (Green S. M. (2011). "Cheerio, Laddie! Bidding Farewell to the Glasgow
Coma Scale". Annals of Emergency Medicine. 58 (5): 427–430). there is no agreed-upon alternative, newer
scores such as the Simplified motor scale and FOUR score have also been developed as improvements to
the GCS.[8] Although the inter-rater reliability of these newer scores has been slightly higher than that of the
GCS, they have not gained consensus as replacements.
Available, simple, quick, non-inavsive, validated
Clinical examination

FOUR (Full Outline of UnResponsiveness) score
Eye and motor responses, brainstem reflexes, and breathing
pattern
17-point (0-16) scale

Non- or slightly sedated pts
More complete in assessment of brainstem function
Better inter-rater reliability, sensitivity and PPV than GCS
Experience is limited
No pediatric studies (as GCS)
ICP Monitoring – w/o invasive transducers
Transcranial Doppler technique

Optic nerve sonography (sheath diameter)
Normal:
ICP monitoring
1.   We recommend the continuous assessment and monitoring of ICP and CPP
     including waveform quality using a structured protocol to ensure accuracy and
     reliability. Instantaneous ICP values should be interpreted in the context of
     monitoring trends, CPP, and clinical evaluation.
     (Strong recommendation, high quality of evidence.)
2.   ICP and CPP monitoring are recommended as a part of protocol-driven care in
     patients who are at risk of elevated intracranial pressure based on clinical and/or
     imaging features.
     (Strong recommendation, moderate quality of evidence.)
3.   We recommend that ICP and CPP monitoring be used to guide medical and
     surgical interventions and to detect life-threatening imminent herniation; however,
     the threshold value of ICP is uncertain on the basis of the literature.
     (Strong recommendation, high quality of evidence.)
4.   Several studies confirm that brain hypoxia/ischemia can occur when ICP and CPP
     are within established thresholds for normality.
5.   Elevated ICP values can arise from both increased CBF (hyperemia) and reduced
     CBF secondary to cerebral edema, highlighting the nonspecific nature of ICP
     readings.     (oder aufgeteilt auf zwei Folien, wie nachstehend)          Le Roux P. ICM 2014
ICP monitoring
1.               We recommend the continuous assessment
                 and monitoring of ICP and CPP including
                 waveform quality using a structured protocol to
                 ensure accuracy and reliability. Instantaneous
                 ICP values should be interpreted in the context
                 of monitoring trends, CPP, and clinical
                 evaluation.     (Strong recommendation, high
                 quality of evidence.)
2.               ICP and CPP monitoring are recommended as
                 a part of protocol-driven care in patients who
                 are at risk of elevated intracranial pressure
                                                         Le Roux P. ICM 2014
ICP monitoring
3.                             We recommend that ICP and CPP monitoring
                               be used to guide medical         and surgical
                               interventions and to detect life-threatening
                               imminent herniation; however, the threshold
                               value of ICP is uncertain on the basis     of the
                               literature.
                                 (Strong recommendation, high quality of
                               evidence.)
4. Several studies confirm that brain hypoxia/ischemia can occur when ICP
     and CPP are within established thresholds for normality.
5. Elevated ICP values can arise from both increased CBF (hyperemia)
                                                                Le Roux P.and
                                                                          ICM 2014
ICP monitoring

Use of ICP monitoring may be considered
•              both, parenchymal ICP monitors and external ventricular
               catheters     (EVD) provide reliable and accurate data
•              association of intracranial hypertension and poor neurologic
               outcome
•              improved outcomes associated with successful ICP - lowering
               therapies
•              ICP per se does not provide a useful prognostic marker of
               functional    outcome

                                                       Kochanek PM. PCCM 2012; Le Roux P. ICM 2014
The recommendations for an optimal CPP have changed over time and may in
part be associated with the variability in how mean arterial pressure (MAP) is
measured to determine CPP.

Zero reference points for both MAP and ICP should be the same, that is, at the
level of the brain using the tragus of the ear as the external landmark especially in
tall patients
A recent narrative review was unable to determine how MAP was measured in the
calculation of CPP in 50% of 32 widely cited studies of CPP-guided management

                                                                Kosty JA. Anesth Analg 2013;117:694-8
CPP autoregulation
By ICP (as a surrogate)
    transcranial Doppler
    near-infrared spectroscopy

No good comparative studies
Thresholds may vary with age and sex (and time)

E.g. pts with preserved autoregulation may benefit from higher blood pressures
N.B. autoregulation is vulnerable in rewarming

                                                                      Le Roux P. ICM 2014
CPP autoregulation
May be useful in broad targeting of cerebral perfusion management goals and
prognostication in acute brain injury.
   (Weak recommendation, moderate quality of evidence)
Continuous bedside monitoring is now feasible, and we suggest that should be
considered as a part of MMM. Measurement of pressure reactivity has been
commonly used for this purpose, but many different approaches may be equally
valid.
   (Weak recommendation, moderate quality of evidence)

                                                                     Le Roux P. ICM 2014
Transcranial Doppler
Pulsatility index

ARI = %Δ eCVR/%Δ MAP
   (ARI = autoregulation index
   eCVR = estimated cerebrovascular resistance
   MAP = mean arterial pressure)
≥ 0.4 is normal
Somatosensory evoked potentials (SSEP)
Somatosensory evoked potentials (SSEP)
Outcome
 n=109, SSEP3 in 93%
abnormal, but present SSEP: GOS>3 in 63%
negative SSEP: GOS
BEST-TRIP: Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure
Microdialysis - adults
We recommend microdialysis in patients with or at risk of cerebral ischemia,
   hypoxia, energy failure, and glucose deprivation.
   (Strong recommendation, low quality of evidence.)
We recommend that cerebral microdialysis only be used in combination with
clinical indicators and other monitoring modalities for prognostication
   (Strong recommendation, low quality of evidence.)
We suggest the use of cerebral microdialysis to assist titration of medical
therapies such as systemic glucose control and the treatment of delayed
cerebral ischemia.
   (Weak recommendation, moderate quality of evidence.)

                                                                  Le Roux P et al. Int Care Med 2014
Seizures – monitoring clinical signs & symptoms

                           Wainwright MS in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Multimodality neuromonitoring is the
                                                                      simultaneous measurement of
                                                                      several variables which allows an
                                                                      individually tailored approach to the
                                                                      management of patients with TBI.
                                                                      Treatment decisions are guided by
                                                                      monitored changes in
                                                                      pathophysiologic variables rather
                                                                      than generic one-size-fits-all
                                                                      treatment target.

The aim of monitoring is to guide therapy and assist clinicians in decision making
                                                                                                       Martinez R 2016
ICP monitoring – invasive transducers

ICP monitor only in 60% of patients with severe TBI (GCS≤8)
      these hospitals have a lower mortality and disability but have
      longer PICU and hospital stay, more ventilator days
      ⇒ entry criteria for ICP monitor use is not sensitive

Elevated ICP only in 50% of those who had an ICP monitor
       only in traumatic axonal injured pts
       GCS≤8 predicts ICP>20mmHg
               Sens. 80%, Spec. 55%; PPV 68%, NPV 77%
       „Any abnormality in CT“ predicts ICP>20mmHg
               Sens. 90%, Spec. 94%; PPV 60%, NPV 80%
Hemodynamic monitoring
1. We recommend the use of electrocardiography and invasive monitoring of
   arterial blood pressure in all unstable or at-risk patients in the ICU.
   (Strong Recommendation, moderate quality of evidence.)
2. We recommend that hemodynamic monitoring be used to establish goals that
   take into account cerebral blood flow (CBF) and oxygenation.
   (Strong recommendation, moderate quality of evidence.)
3. We recommend the use of additional hemodynamic monitoring (e.g.,
   intravascular volume assessment, echocardiography, cardiac output
   monitors) in selected patients with hemodynamic instability.
   (Strong recommendation, moderate quality of evidence.)
4. We suggest that the choice of technique for assessing pre-, after-load,
   cardiac output, and global systemic perfusion should be guided by specific
   evidence and local expertise.
   (Weak recommendation, moderate quality of evidence.)

                                                                                Le Roux P. ICM 2014
Clinical examination

We recommend that assessments with either the GCS (combined with assessment of pupils) or
   the FOUR score be routinely performed in comatose adult patients with acute brain injury

(Strong recommendation, low quality of evidence.)

                                                                                   Le Roux P. ICM 2014
ICP Wave analysis – compensatory reserve
RAP index: correlation coefficient (R) between pulse amplitude (A) of the
      fundamental component (A) and mean (ICP) (P)

                                             Tasker RS in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Multimodality Neuromonitoring
The challenge is to integrate all data and to avoid misinterpretation: when and how to
      treat
It is difficult to demonstrate that any single monitor or combination of monitors has a
     positive effect on outcome, because outcome is influenced by the therapeutic plan
     driven by monitoring, not by monitoring itself

(1)           trends in physiological changes (2) auto regulation (3) optimum CPP (4)
              patient-specific thresholds

In the end, MMM is an extension of the clinical examination and cognitive skill of the
clinician, and is only as good or as useful as the clinical team who is using the
    monitor and available therapeutic options.

                                                                       Le Roux P et al. Int Care Med 2014
Transcranial Doppler (TCD)
Application in adult medicine

Static Test of autoregulation
   blood flow velocity changes during changes of arterial blood pressure by
   vasopressor infusion
   Static rate of auto regulation (SoR): percentage increase in vascular resistance
   divided percentage rise of blood pressure: SoR 100% intact auto regulation;
   SoR 0% no autoregulation

TCD reactivity to changes of PaCO2
  cerebral vessels react to changes in PaCO2 when auto regulation is impaired
  CO22 reactivity correlates with outcome and high PaCO2 elevates ICP

Dynamic test of autoregulation
   index which describes how quickly cerebral vessels react to a sudden fall of ABP
Transcranial Doppler (TCD)
Application in adult medicine

Static Test of autoregulation
   blood flow velocity changes during changes of arterial blood pressure by
   vasopressor infusion
   Static rate of auto regulation (SoR): percentage increase in vascular resistance
   divided percentage rise of blood pressure: SoR 100% intact auto regulation;
   SoR 0% no autoregulation

TCD reactivity to changes of PaCO2
  cerebral vessels react to changes in PaCO2 when auto regulation is impaired
  high PaCO2 elevates ICP; CO22 reactivity correlates with outcome

Dynamic test of autoregulation
   index which describes how quickly cerebral vessels react to a sudden fall of ABP
ICP Wave analysis – compensatory reserve
RAP index: correlation coefficient (R) between pulse amplitude (A) of the
      fundamental component (A) and mean (ICP) (P)

                                             Tasker RS in Fuhrman & Zimmerman (eds). Pediatric Critical Care 5th ed 2017
Cerebral Perfusion Pressure (CPP)

CPP = MAP – ICP

   • >(40) 45-50 mmHg infants
   • >60 (-65) mmHg children/adolescents

   • „Hypertonic resuscitation“

   • Vasopressors

Perfusion ≠ Pressure: Flow = ∆P x ∏ x R4/8nl

(Rule of Hagen Poiseuille)

                                               Child Nerv Syst 2004; Crit Care Med 2003
NEURO-Monitoring
besteht aus einer Kombination aus klinischer Untersuchung, intrakranieller Druckmessung und Bildgebung

Techniken: Zerebraler Blut Fluss
        ICP
        CPP
        Transcranielle Doppler Sonographie ( TCD); Duplex Sonographie
        Thermale Diffusion Flowmetrie (TD)
Zerebrale Oxygenation
        V. jugularis Sättigung (SjvO2)
        Sauerstoffpartialdruck im Gehirnparenychm(PbtO2)
Zerebral Stoffwechsel
        Microdialyse
Globale zerebrale Funktion
        EEG
        Biomarker
Sauerstoffpartialdruck im Gehirn (PbtO2)
Normal:    25-30 mmHg
Grenzwert: 10 (20) mmHg

Niederer PbtO2 kann mit erhöhtem ICP aber nicht mit Prognose korrelieren
   ABER er ändert sich auf Interventions

   kann Hypoperfusion Areale identifizieren
   und gibt zu ICP zusätzliche Informationen

                                                   Gupta AK. J Neurosurg 2002; Ushewokunze S. Childs Nerv Syst 2009
Brain parenchymal oxygen tension (PbtO2)

    Report on 5 children
                              Gupta AK. J Neurosurg 2002; Ushewokunze S. Childs Nerv Syst 2009
Brain parenchymal oxygen tension (PbtO2)
Normal:    25-30 mmHg
Threshold: 10 (20) mmHg

No correlation between the oxygen tension in PET and PbtO2
Low PbtO2 may correlate with elevated ICP and but not with outcome
   BUT it changes due to interventions

   can identify cerebral hypoperfusion more
   reliably than ICP monitoring alone

                                                   Gupta AK. J Neurosurg 2002; Ushewokunze S. Childs Nerv Syst 2009
NSE und Outcome nach Kreislaufstillstand
bei Erwachsenen
Sie können auch lesen