Smooth intensity maps and the Bortfeld-Boyer sequencer - Ph. Süss, K.-H. Küfer - Berichte des Fraunhofer ITWM, Nr. 109 (2007)

Die Seite wird erstellt Marvin Witt
 
WEITER LESEN
Ph. Süss, K.-H. Küfer

Smooth intensity maps and the
Bortfeld-Boyer sequencer

Berichte des Fraunhofer ITWM, Nr. 109 (2007)
© Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM 2007

ISSN 1434-9973

Bericht 109 (2007)

Alle Rechte vorbehalten. Ohne ausdrückliche schriftliche Genehmigung des
Herausgebers ist es nicht gestattet, das Buch oder Teile daraus in ­irgendeiner
Form durch Fotokopie, Mikrofilm oder andere Verfahren zu reproduzieren
oder in eine für Maschinen, insbesondere Datenverarbei­tungsanlagen, ver-
wendbare Sprache zu übertragen. Dasselbe gilt für das Recht der öffentlichen
Wiedergabe.

Warennamen werden ohne Gewährleistung der freien Verwendbarkeit benutzt.

Die Veröffentlichungen in der Berichtsreihe des Fraunhofer ITWM können
bezogen werden über:

Fraunhofer-Institut für Techno- und
Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1

67663 Kaiserslautern
Germany

Telefon:		   +49 (0) 6 31/3 16 00-0
Telefax:     +49 (0) 6 31/3 16 00-10 99
E-Mail:		    info@itwm.fraunhofer.de
Internet:    www.itwm.fraunhofer.de
Vorwort

Das Tätigkeitsfeld des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik
ITWM umfasst anwendungsnahe Grundlagenforschung, angewandte Forschung
sowie Beratung und kundenspezifische Lösungen auf allen Gebieten, die für Tech-
no- und Wirtschaftsmathematik bedeutsam sind.

In der Reihe »Berichte des Fraunhofer ITWM« soll die Arbeit des Instituts konti-
nuierlich einer interessierten Öffentlichkeit in Industrie, Wirtschaft und Wissen-
schaft vorgestellt werden. Durch die enge Verzahnung mit dem Fachbereich Ma-
thematik der Universität Kaiserslautern sowie durch zahlreiche Kooperationen mit
internationalen Institutionen und Hochschulen in den Bereichen Ausbildung und
Forschung ist ein großes Potenzial für Forschungsberichte vorhanden. In die Be-
richtreihe sollen sowohl hervorragende Diplom- und Projektarbeiten und Disser-
tationen als auch Forschungsberichte der Institutsmitarbeiter und Institutsgäste zu
aktuellen Fragen der Techno- und Wirtschaftsmathematik aufgenommen werden.

Darüber hinaus bietet die Reihe ein Forum für die Berichterstattung über die zahl-
reichen Kooperationsprojekte des Instituts mit Partnern aus Industrie und Wirt-
schaft.

Berichterstattung heißt hier Dokumentation des Transfers aktueller Ergebnisse aus
mathematischer Forschungs- und Entwicklungsarbeit in industrielle Anwendungen
und Softwareprodukte – und umgekehrt, denn Probleme der Praxis generieren
neue interessante mathematische Fragestellungen.

Prof. Dr. Dieter Prätzel-Wolters
Institutsleiter

Kaiserslautern, im Juni 2001
Smooth intensity maps and the Bortfeld-Boyer
                     sequencer

                           Philipp Süss∗, Karl-Heinz Küfer

                         Department of Optimization
                Fraunhofer Institute for Industrial Mathematics
              Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

                                         Abstract
      It has been empirically verified that smoother intensity maps can be expected
      to produce shorter sequences when step-and-shoot collimation is the method
      of choice. This work studies the length of sequences obtained by the se-
      quencing algorithm by Bortfeld and Boyer using a probabilistic approach.
      The results of this work build a theoretical foundation for the up to now only
      empirically validated fact that if smoothness of intensity maps is considered
      during their calculation, the solutions can be expected to be more easily ap-
      plied.

∗
    Corresponding author: philipp.suess@itwm.fraunhofer.de

                                              1
1 INTRODUCTION                                                                      1

1 Introduction
A treatment plan in intensity modulated radiotherapy treatment (IMRT) is applied
by blocking parts of the beam surface for predetermined times. This is realized
by multileaf collimators (MLCs). If the beam is switched off while the leaves
configure a “shape” through which some radiation is emitted, then this is referred
to as “step-and-shoot” delivery. The collection of all shapes and the time the beam
is switched on for a shape (its “monitor unit”) is referred to as the “sequence” of a
given treatment plan.
It has been empirically verified that smoother maps can be expected to produce
shorter sequences. However, the absolute statement that smoother maps always
result in sequences with fewer shapes is incorrect. Counterexamples exist where
a higher variation does not lead to an increase in the number of shapes. There-
fore, any statement about the relationship between the smoothness of a map and
the length of its sequence in static collimation can only be made in terms of their
expected values when a probability distribution of the intensity maps is assumed.
Thus, the appropriate mathematical equivalent statement to the observed phenom-
ena can be given by

Proposition 1.1
If the total variation of an intensity map increases, the number of shapes required
to sequence it can be expected to increase as well.
The total variation of an intensity map is taken as the inverse to the measure of
smoothness and given by
                                    n
                                  m X
                                            (xi,j − xi,j−1 )2 ,
                                  X
                         T V :=                                                   (1)
                                  i=1 j=1

where m is the number of rows in the map, and n is the number of columns. xi,j
denotes the intensity with which beamlet (i, j) contributes to the dose. In this work,
we will study the number of shapes produced by the sequencing algorithm written
by Bortfeld and Boyer [1] when a certain type of intensity map is sequenced. These
special intensity maps are created using a specified probabilistic method. Then, a
result similar to Proposition 1.1 for the case of sequences produced by the Bortfeld
algorithm is proven. In particular, we will show that by varying a parameter of
the probabilistic method used to produce the intensity maps both, the expected
total variation and the expected number of shapes will increase. In the discussion
we point to an obvious generalization of the probabilistic method to create the
intensity maps which will not alter the results of the analysis. We then conclude
that the stated Proposition is true for a rather large class of intensity maps.
This work is, to our knowledge, the first attempt to construct a theoretical founda-
tion to the afore-mentioned empirical knowledge about the tendency of correlation
between smoothness and sequences.
2 RANDOM INTENSITY MAPS                                                            2

The implications are not limited to the mathematical insight: the message that
smoothing maps is beneficial to the treatment is carried implicitly and explicitly
in many publications [2, 3, 4, 5, 6, 7, 8, 9]. This work supplies some theoretical
justification to these undertakings.

2 Random intensity maps
To construct a random intensity map, we let each beamlet intensity xi,j be a random
variable with value depending on its left neighbor xi,j−1 and an added stochastic
term. To this end, let a random variable ∆i,j ∈ {−1, 0, 1} be distributed as follows.
p is a parameter between 0 and 1.
                                                        1−p
                                −1 with probability 2
                         ∆i,j =    0     with probability p                       (2)
                                                         1−p
                                   1 with probability 2
                                

We will then let each beamlet intensity be given by xi,j = xi,j−1 + c ∆i,j , where
c is a positive constant. RandomIntM ap defined in Algorithm 2.1 formalizes
this procedure. To ensure non-negativity, xi,0 := nc for every row i. Taking the

Algorithm 2.1 Method to create random intensity maps
Procedure: RandomIntM ap
Input: Constant c, a stream of random variables ∆1,1 , . . . , ∆m,n identically and
independently distributed with probability mass function (2)
Output: Intensity map x

 1:   for row i = 1 to m do
         Let xi,0 := nc
         for column j = 1 to n do
             Let xi,j := xi,j−1 + c ∆i,j
 5:      next j
      next i

expectation of the total variation T V (1), we have
                   X m X  n                     X   n
                                                    m X
                                              2
     E (T V ) = E             (xi,j − xi,j−1 ) =        E (xi,j − xi,j−1 )2 .
                     i=1 j=1                       i=1 j=1

The expected value of the squared level jump is given by

E (xi,j − xi,j−1 )2 = E (xi,j−1 + c ∆i,j − xi,j−1 )2 = E (c ∆i,j )2 = c2 E ∆2i,j ,
                                                                                

and the expected value of ∆2i,j is given by

                            1−p                 1−p
            E ∆2i,j = (−1)2     + (0)2 p + (1)2
                   
                                                    = 1 − p.
                             2                   2
3 NUMBER OF SHAPES IN BORTFELD SEQUENCES                                               3

The expected total variation is then given by

                            E (T V ) = mnc2 (1 − p),

and is linear in the probability that the level jump is not zero. This parameter
q := 1 − p can be thought of as our “control” for the smoothness of the maps we
produce.

3 Number of shapes in Bortfeld sequences
The sequencing algorithm given by Bortfeld and Boyer [1] was the first that re-
sulted in sequences with provably optimal beam-on time (total number of monitor
units). The number of shapes resulting from an application of this sequencer can
approximately be given by
                                                     n
                                                     X
     N S(Bortfeld) ≈ max SP Gi = max                       max (0, xi,j − xi,j−1 ) ,
                       i=1,...,m         i=1,...,m
                                                     j=1

where SP Gi stands for the “sum of positive gradients” in row i. This is the number
of iterations the algorithm will perform, and in each iteration a shape with monitor
unit 1 is created. The actual number of shapes will be slightly less since different
iterations may produce the same shapes. However, this is very unlikely if the in-
tensities are continuos variables and we neglect this fact for the remainder of this
work.
Next we determine the expected value of maximum sum of positive gradients in
terms of q = 1 − p. Denote by SP G(m) the maximum sum of positive gradients
over m rows of the intensity map:

                           SP G(m) := max SP Gi .
                                        i=1,...,m

Further denote by L the maximum intensity value in x: L := maxi,j xi,j . Note
that the maximum sum of positive gradients in one row is bounded by n̂ := nL
                                                                           2 .
Then
                                  n̂
                                X                    
  E (N S(Bortfeld)) ≈ E SP G(m) =    t Pr SP G(m) = t
                                          t=0
                n̂
                X                                        
                                                       
              =    t Pr SP G(m) ≤ t − Pr SP G(m) ≤ t − 1
                 t=1

                                        n̂−1
                                          X                  
                 = n̂ Pr SP G(m)   ≤ n̂ −     Pr SP G(m) ≤ t
                                            t=0
                                                             n̂−1
                                                             X                   m
                                                    = n̂ −          Pr (SP Gi ≤ t) ,
                                                             t=0
3 NUMBER OF SHAPES IN BORTFELD SEQUENCES                                                           4

where SP Gi is treated as a random variable.                   
Now we are interested in the rate of change of E SP G(m) with respect to q :=
1−p. If it can be shown to be positive for all 0 ≤ q ≤ 1, then a positive relationship
between the variation and the length of Bortfeld sequences would be established.
Let us first study the distribution of SP Gi . That is, we would like to calculate
                                                                    
                                       Xn
               Pr (SP Gi ≤ t) = Pr       max(0, xi,j − xi,j−1 ) ≤ t .
                                               j=1

Expressing SP Gi a little differently, we obtain
                                     n
                                     X
                      SP Gi =              χ (xi,j > xi,j−1 ) (xi,j − xi,j−1 )
                                     j=1
                                     n
                                     X
                                 =         χ (xi,j > xi,j−1 ) c ∆ij ,
                                     j=1

where χ (A) represents the characteristic function of event A. Thus, we obtain
                                                           
                           n                             
                          X                              t                 
  Pr (SP Gi ≤ t) = Pr        ∆ij χ (xi,j > xi,j−1 ) ≤         =: Pr Pi ≤ t̂ ,
                                                         c
                                 j=1

where Pi is the number of positive level jumps in row i, and t̂ := ct .
                                                                   

                           figure Pi is a binomial random variable with distribu-
Note that by (2),the random
                      1−p
tion parameters n, 2 . Thus,

                                                       t̂   
                                                                1 − p u 1 + p n−u
                                                                           
                                                      X   n
        Pr (SP Gi ≤ t) = Pr Pi ≤ t̂ =
                                                             u         2              2
                                                       u=0
                             
Differentiating now E SP G(m) with respect to q gives
                                 n̂−1               m−1
                ∂E SP G(m)        X
        c(q) :=              = −m      Pr (SP Gi ≤ t)     d(t, q),
                    ∂q
                                                       t=0

where
            t̂     
                    u q u−1 2 − q n−u
                                                                                         n−u−1 
            X   n                                                  n − u  q u       2−q
d(t, q) =                                                        −
                  u          2   2                 2                 2     2           2
            u=0
            t̂     
                    q u 2 − q n−u u
                                                                     
            X   n                                                n−u
        =                                                    −
                  u     2              2                 q       2−q
            u=0
                        t̂
                1    X
        =              (2u − nq) Pr (Pi = u) .
            q(2 − q)
                       u=0
3 NUMBER OF SHAPES IN BORTFELD SEQUENCES                                                             5

Let now
                                             q
                                   v :=         ,         0 < v < 1.                             (3)
                                            2−q
Then
                      n̂−1
                                   "       t̂                             n !m−1
           m (1 + v)2 X
                                                              
                                           X   n                   1
  c(q) = −                                             vu                               ·
               2v                                u                1+v
                            t=0            u=0
                t̂                            n            t̂          n !#
                X   n                   1                nv X n u          1
                            uv u                      −               v            . (4)
                      u                1+v              1 + v u=0 u       1+v
                u=0

Taking the terms (1 + v)−1 out of the summations, we get
                            n̂−1
                                 " t̂   !m−1
                   m        X       X n
  c(q) = −            mn−2                    vu     ·
            2v (1 + v)                     u
                            t=0     u=0
                                       t̂                 t̂  
                                                                     !#
                                     X      n    u    nv X n u
                                               uv −                v   . (5)
                                            u       1  + v      u
                                     u=0                   u=0

Simplifying once by taking out the v in the denominator of the first fraction, we
obtain the following difference in the last bracket
                                                             
                        t̂                        t̂  
                      X      n                n  X      n
                               uv u−1 −                   vu                 (6)
                             u             1+v          u
                          u=0                                         u=0

Now note that
                      t̂                   n  
                      X   n            u
                                             X  n u       n
                               v = (1 + v) −       v ,
                             u                  u
                      u=0                                             u=t̂+1
and
                          t̂                             t̂  
                          X   n                 u−1     ∂ X n u
                                           uv         =           v .
                                   u                    ∂v     u
                          u=0                                     u=0
This implies
                          n̂−1
                               " t̂   !m−1
                  m       X       X n
  c(q) = −           mn−2                  vu      ·
           2 (1 + v)                    u
                          t=0     u=0
                       n                             n   !#
              n−1
                      X     n      u−1           n−1
                                                       X  n u
     n(1 + v)     −             uv     − n(1 + v)    +      v  . (7)
                            u                             u
                       u=t̂+1                                                      u=t̂+1

And this finally simplifies to
                         n̂−1
                                       "     t̂  
                                                                      !m−1      n  
                                                                                                #
                m        X                   X   n                u
                                                                                X  n u−1
 c(q) = −           mn−2                                      v                       v  (v − u) .
          2 (1 + v)                                   u                            u
                         t=0                 u=0                               u=t̂+1
                                                                                                 (8)
4 DISCUSSION                                                                            6

Now let us look at the terms involved:
                                                        t̂  
                                                                          !m−1
                                                        X   n         u
                                                                  v              >0    (9)
                                                              u
                                                        u=0
                                                n  
                                                X  n u−1
                                                      v  (v − u) < 0                  (10)
                                                   u
                                               u=t̂+1
                 n̂−1
                      " t̂   !m−1 n                #
                 X      X n         X n
         thus                 vu          v u−1 (v − u) < 0                           (11)
                            u          u
                 t=0     u=0                 u=t̂+1

                                                        m
for all possible choices of t and q. And, because − 2(1+v) mn−2 < 0, we arrive at

the conclusion that c(q) > 0.
In other words, the Bortfeld sequencing algorithm produces sequences in proba-
bly increasing lengths as the intensity maps from the random method become less
smooth.

4 Discussion
The main result from this work is that for the type of intensity map created by
RandomIntM ap, the Bortfeld sequences increase with total variation. Notice that
the crucial point in the argumentation was the fact that RandomIntM ap produces
level jumps that are binomially distributed - just like a series of coin flips to decide
whether the jump goes up or not. That is, the magnitude of the jumps, c remains in
the calculations, but has less impact on the validity of the result.
Imagine a modified randomized method that creates level jumps according to (2)
but distributes the magnitudes of the jumps randomly. It is easy to see, that if
the jumps are not too small, the variation (1) of the intensity maps increases. It
is also relatively easy to imagine that SPG will increase as a result of sufficient
variation introduced by differing level jump magnitudes cij . In other words, the
main result that sequences will increase with increasing variation will hold even
for the generalized random intensity map creation.
This argument shows that Propsition 1.1 holds for a large class of intensity maps.

References
[1] T Bortfeld, D Kahler, T Waldron, and A Boyer. X-ray field compensa-
    tion with multileaf collimators. International Journal of Radiation Oncol-
    ogy*Biology*Physics, 28:723–730, 1994.

[2] A Chvetsov, D Calvetti, J Sohn, and T Kinsella. Regularization of inverse
    planning for intensity-modulated radiotherapy. Medical Physics, 32(2):501–
    514, 2005.
REFERENCES                                                                      7

[3] D Craft, P Süss, and T Bortfeld. The tradeoff between treatment plan quality
    and intensity field complexity in IMRT. To appear in International Journal of
    Radiation Oncology*Biology*Physics, 2007.

[4] J Llacer, N Agazaryan, T Solberg, and C Promberger. Degeneracy, frequency
    reponse and filtering in IMRT optimization. Physic and Medicine in Biology,
    49:2853–2880, 2004.

[5] R Mohan, M Arnfield, S Ton, Q Wu, and J Siebers. The impact of fluctuations
    in intensity patterns on the number of monitor units and the quality and accu-
    racy of intensity modulated radiotherapy. Medical Physics, 27(6):1226–1237,
    2000.

[6] S Spirou, N Fournier-Bidoz, J Yang, CS Chui, and C Ling. Smoothing
    intensity-modulated beam profiles to improve the efficiency of delivery. Med-
    ical Physics, 28(10):2105–2112, 2000.

[7] X Sun and P Xia. A new smoothing procedure to reduce delivery segments for
    static MLC-based IMRT planning. Medical Physics, 31(5):1158–1165, 2004.

[8] S Webb. A simple method to control aspects of fluence modulation in IMRT
    planning. Physics in Medicine and Biology, 46:N187–N195, 2001.

[9] S Webb, D Convery, and P Evans. Inverse planning with constraints to gen-
    erate smoothed intensity-modulated beams. Physics in Medicine and Biology,
    43:2785–2794, 1998.
Published reports of the                                     11. H. W. Hamacher, A. Schöbel
                                                             On Center Cycles in Grid Graphs
                                                                                                                     24. H. W. Hamacher, S. A. Tjandra
                                                                                                                     Mathematical Modelling of Evacuation
Fraunhofer ITWM                                              (15 pages, 1998)                                        Problems: A State of Art
                                                                                                                     (44 pages, 2001)
                                                             12. H. W. Hamacher, K.-H. Küfer
                                                             Inverse radiation therapy planning -                    25. J. Kuhnert, S. Tiwari
The PDF-files of the ­following reports                      a multiple objective optimisation approach              Grid free method for solving the Poisson
are available under:                                         (14 pages, 1999)                                        equation
www.itwm.fraunhofer.de/de/                                                                                           Keywords: Poisson equation, Least squares method,
                                                                                                                     Grid free method
zentral__berichte/berichte                                   13. C. Lang, J. Ohser, R. Hilfer
                                                                                                                     (19 pages, 2001)
                                                             On the Analysis of Spatial Binary Images
1.   D. Hietel, K. Steiner, J. Struckmeier                   (20 pages, 1999)
                                                                                                                     26. T. Götz, H. Rave, D. Reinel-Bitzer,
A Finite - Volume Particle Method for                                                                                    K. Steiner, H. Tiemeier
Compressible Flows                                           14. M. Junk
                                                                                                                     Simulation of the fiber spinning process
(19 pages, 1998)                                             On the Construction of Discrete Equilibrium             Keywords: Melt spinning, fiber model, Lattice
                                                             Distributions for Kinetic Schemes                       Boltzmann, CFD
2.   M. Feldmann, S. Seibold                                 (24 pages, 1999)                                        (19 pages, 2001)
Damage Diagnosis of Rotors: Application
of ­Hilbert Transform and Multi-Hypothe-                     15. M. Junk, S. V. Raghurame Rao                        27. A. Zemitis
sis Testing                                                  A new discrete velocity method for Navier-              On interaction of a liquid film with an
Keywords: Hilbert transform, damage diagnosis, Kal-          Stokes equations                                        obstacle
man filtering, non-linear dynamics                           (20 pages, 1999)                                        Keywords: impinging jets, liquid film, models, numeri-
(23 pages, 1998)                                                                                                     cal solution, shape
                                                                                                                     (22 pages, 2001)
                                                             16. H. Neunzert
3. Y. Ben-Haim, S. Seibold
                                                             Mathematics as a Key to Key Technologies
Robust Reliability of Diagnostic Multi-                                                                              28. I. Ginzburg, K. Steiner
                                                             (39 pages (4 PDF-Files), 1999)
Hypothesis Algorithms: Application to                                                                                Free surface lattice-Boltzmann method to
Rotating Machinery                                                                                                   model the filling of expanding cavities by
Keywords: Robust reliability, convex models, Kalman          17. J. Ohser, K. Sandau
                                                                                                                     Bingham Fluids
filtering, multi-hypothesis diagnosis, rotating machinery,   Considerations about the Estimation of the              Keywords: Generalized LBE, free-surface phenomena,
crack diagnosis                                              Size Distribution in Wicksell’s Corpuscle               interface boundary conditions, filling processes, Bing-
(24 pages, 1998)                                             Problem                                                 ham viscoplastic model, regularized models
                                                             (18 pages, 1999)                                        (22 pages, 2001)
4. F.-Th. Lentes, N. Siedow
Three-dimensional Radiative Heat Transfer                    18. E. Carrizosa, H. W. Hamacher, R. Klein,             29. H. Neunzert
in Glass Cooling Processes                                       S. Nickel                                           »Denn nichts ist für den Menschen als Men-
(23 pages, 1998)                                             Solving nonconvex planar location prob-                 schen etwas wert, was er nicht mit Leiden-
                                                             lems by finite dominating sets                          schaft tun kann«
5. A. Klar, R. Wegener                                       Keywords: Continuous Location, Polyhedral Gauges, Fi-   Vortrag anlässlich der Verleihung des
A hierarchy of models for multilane                          nite Dominating Sets, Approximation, Sandwich Algo-     Akademie­preises des Landes Rheinland-
                                                             rithm, Greedy Algorithm                                 Pfalz am 21.11.2001
vehicular traffic
                                                             (19 pages, 2000)                                        Keywords: Lehre, Forschung, angewandte Mathematik,
Part I: Modeling
                                                                                                                     Mehrskalenanalyse, Strömungsmechanik
(23 pages, 1998)
                                                             19. A. Becker                                           (18 pages, 2001)
                                                             A Review on Image Distortion Measures
Part II: Numerical and stochastic
                                                             Keywords: Distortion measure, human visual system       30. J. Kuhnert, S. Tiwari
investigations
                                                             (26 pages, 2000)                                        Finite pointset method based on the projec-
(17 pages, 1998)
                                                                                                                     tion method for simulations of the incom-
                                                             20. H. W. Hamacher, M. Labbé, S. Nickel,                pressible Navier-Stokes equations
6. A. Klar, N. Siedow
                                                                 T. Sonneborn                                        Keywords: Incompressible Navier-Stokes equations,
Boundary Layers and Domain Decompos-                                                                                 Meshfree method, Projection method, Particle scheme,
                                                             Polyhedral Properties of the Uncapacitated
ition for Radiative Heat Transfer and Diffu-                                                                         Least squares approximation
                                                             Multiple Allocation Hub Location Problem                AMS subject classification: 76D05, 76M28
sion Equations: Applications to Glass Manu-
                                                             Keywords: integer programming, hub location, facility   (25 pages, 2001)
facturing Processes                                          location, valid inequalities, facets, branch and cut
(24 pages, 1998)                                             (21 pages, 2000)
                                                                                                                     31. R. Korn, M. Krekel
7.   I. Choquet                                              21. H. W. Hamacher, A. Schöbel                          Optimal Portfolios with Fixed Consumption
Heterogeneous catalysis modelling and                                                                                or Income Streams
                                                             Design of Zone Tariff Systems in Public
numerical simulation in rarified gas flows                                                                            Keywords: Portfolio optimisation, stochastic control,
                                                             Transportation                                          HJB equation, discretisation of control problems.
Part I: Coverage locally at equilibrium                      (30 pages, 2001)                                        (23 pages, 2002)
(24 pages, 1998)

                                                             22. D. Hietel, M. Junk, R. Keck, D. Teleaga             32. M. Krekel
8. J. Ohser, B. Steinbach, C. Lang                           The Finite-Volume-Particle Method for                   Optimal portfolios with a loan dependent
Efficient Texture Analysis of Binary Images                  Conservation Laws                                       credit spread
(17 pages, 1998)                                             (16 pages, 2001)                                         Keywords: Portfolio optimisation, stochastic control,
                                                                                                                     HJB equation, credit spread, log utility, power utility,
9. J. Orlik                                                  23. T. Bender, H. Hennes, J. Kalcsics, M. T. Melo,      non-linear wealth dynamics
                                                                                                                     (25 pages, 2002)
Homogenization for viscoelasticity of the                        S. Nickel
integral type with aging and shrinkage                       Location Software and Interface with GIS
(20 pages, 1998)                                             and Supply Chain Management                             33. J. Ohser, W. Nagel, K. Schladitz
                                                             Keywords: facility location, software development,      The Euler number of discretized sets – on the
10. J. Mohring                                               geographical information systems, supply chain man-     choice of adjacency in homogeneous lattices
                                                             agement                                                 Keywords: image analysis, Euler number, neighborhod
Helmholtz Resonators with Large Aperture                     (48 pages, 2001)                                        relationships, cuboidal lattice
(21 pages, 1998)                                                                                                     (32 pages, 2002)
34. I. Ginzburg, K. Steiner                                 43. T. Bortfeld , K.-H. Küfer, M. Monz,                     52. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva
Lattice Boltzmann Model for Free-Surface                        A. Scherrer, C. Thieke, H. Trinkaus                     On a Multigrid Adaptive Refinement Solver
flow and Its Application to Filling Process in              Intensity-Modulated Radiotherapy - A Large                  for Saturated Non-Newtonian Flow in
Casting                                                     Scale Multi-Criteria Programming Problem                    Porous Media
Keywords: Lattice Boltzmann models; free-surface            Keywords: multiple criteria optimization, representa-       Keywords: Nonlinear multigrid, adaptive refinement,
phenomena; interface boundary conditions; filling           tive systems of Pareto solutions, adaptive triangulation,   non-Newtonian flow in porous media
processes; injection molding; volume of fluid method;       clustering and disaggregation techniques, visualization     (17 pages, 2003)
interface boundary conditions; advection-schemes; up-       of Pareto solutions, medical physics, external beam ra-
wind-schemes                                                diotherapy planning, intensity modulated radiotherapy
(54 pages, 2002)                                            (31 pages, 2003)
                                                                                                                        53. S. Kruse
                                                                                                                        On the Pricing of Forward Starting Options
                                                                                                                        under Stochastic Volatility
35. M. Günther, A. Klar, T. Materne, R. Wegener             44. T. Halfmann, T. Wichmann
                                                                                                                         Keywords: Option pricing, forward starting options,
Multivalued fundamental diagrams and                        Overview of Symbolic Methods in Industrial                  Heston model, stochastic volatility, cliquet options
stop and go waves for continuum traffic                     Analog Circuit Design                                       (11 pages, 2003)
equations                                                   Keywords: CAD, automated analog circuit design, sym-
Keywords: traffic flow, macroscopic equations, kinetic      bolic analysis, computer algebra, behavioral modeling,
                                                            system simulation, circuit sizing, macro modeling, dif-
                                                                                                                        54. O. Iliev, D. Stoyanov
derivation, multivalued fundamental diagram, stop and
go waves, phase transitions                                 ferential-algebraic equations, index                        Multigrid – adaptive local refinement solver
(25 pages, 2002)                                            (17 pages, 2003)                                            for incompressible flows
                                                                                                                        Keywords: Navier-Stokes equations, incompressible
                                                            45. S. E. Mikhailov, J. Orlik                               flow, projection-type splitting, SIMPLE, multigrid meth-
36. S. Feldmann, P. Lang, D. Prätzel-Wolters
                                                                                                                        ods, adaptive local refinement, lid-driven flow in a cav-
Parameter influence on the zeros of net-                    Asymptotic Homogenisation in Strength                       ity
work ­determinants                                          and Fatigue Durability Analysis of                          (37 pages, 2003)
Keywords: Networks, Equicofactor matrix polynomials,        Composites
Realization theory, Matrix perturbation theory              Keywords: multiscale structures, asymptotic homogeni-
                                                                                                                        55. V. Starikovicius
(30 pages, 2002)                                            zation, strength, fatigue, singularity, non-local condi-
                                                            tions                                                       The multiphase flow and heat transfer in
                                                            (14 pages, 2003)                                            porous media
37. K. Koch, J. Ohser, K. Schladitz
                                                                                                                        Keywords: Two-phase flow in porous media, various
Spectral theory for random closed sets and                                                                              formulations, global pressure, multiphase mixture mod-
                                                            46. P. Domínguez-Marín, P. Hansen,
estimating the covariance via frequency                                                                                 el, numerical simulation
                                                                N. Mladenovi ´c , S. Nickel                             (30 pages, 2003)
space
Keywords: Random set, Bartlett spectrum, fast Fourier       Heuristic Procedures for Solving the
transform, power spectrum                                   Discrete Ordered Median Problem                             56. P. Lang, A. Sarishvili, A. Wirsen
(28 pages, 2002)                                            Keywords: genetic algorithms, variable neighborhood
                                                            search, discrete facility location                          Blocked neural networks for knowledge
                                                            (31 pages, 2003)                                            extraction in the software development
38. D. d’Humières, I. Ginzburg                                                                                          process
Multi-reflection boundary conditions for                                                                                Keywords: Blocked Neural Networks, Nonlinear Regres-
                                                            47. N. Boland, P. Domínguez-Marín, S. Nickel,
lattice Boltzmann models                                                                                                sion, Knowledge Extraction, Code Inspection
                                                                J. Puerto                                               (21 pages, 2003)
Keywords: lattice Boltzmann equation, boudary condis-
tions, bounce-back rule, Navier-Stokes equation             Exact Procedures for Solving the Discrete
(72 pages, 2002)                                            Ordered Median Problem                                      57. H. Knaf, P. Lang, S. Zeiser
                                                            Keywords: discrete location, Integer programming
                                                            (41 pages, 2003)                                            Diagnosis aiding in Regulation
39. R. Korn                                                                                                             Thermography using Fuzzy Logic
Elementare Finanzmathematik                                                                                             Keywords: fuzzy logic,knowledge representation, ex-
Keywords: Finanzmathematik, Aktien, Optionen, Port­         48. S. Feldmann, P. Lang                                    pert system
folio-Optimierung, Börse, Lehrerweiterbildung, Mathe-       Padé-like reduction of stable discrete linear               (22 pages, 2003)
matikunterricht                                             systems preserving their stability
(98 pages, 2002)                                            Keywords: Discrete linear systems, model reduction,         58. M. T. Melo, S. Nickel, F. Saldanha da Gama
                                                            stability, Hankel matrix, Stein equation
                                                            (16 pages, 2003)                                            Large­scale models for dynamic multi­
40. J. Kallrath, M. C. Müller, S. Nickel
                                                                                                                        commodity capacitated facility location
Batch Presorting Problems:                                                                                              Keywords: supply chain management, strategic
Models and Complexity Results                               49. J. Kallrath, S. Nickel                                  planning, dynamic location, modeling
Keywords: Complexity theory, Integer programming,           A Polynomial Case of the Batch Presorting                   (40 pages, 2003)
Assigment, Logistics                                        Problem
(19 pages, 2002)                                            Keywords: batch presorting problem, online optimiza-        59. J. Orlik
                                                            tion, competetive analysis, polynomial algorithms, lo-
                                                            gistics                                                     Homogenization for contact problems with
41. J. Linn
                                                            (17 pages, 2003)                                            periodically rough surfaces
On the frame-invariant description of the                                                                               Keywords: asymptotic homogenization, contact
phase space of the Folgar-Tucker equation                                                                               ­problems
Key words: fiber orientation, Folgar-Tucker equation, in-   50. T. Hanne, H. L. Trinkaus                                (28 pages, 2004)
jection molding                                             knowCube for MCDM –
(5 pages, 2003)                                             Visual and Interactive Support for                          60. A. Scherrer, K.-H. Küfer, M. Monz, F. Alonso,
                                                            Multicriteria Decision Making                                   T. Bortfeld
42. T. Hanne, S. Nickel                                     Key words: Multicriteria decision making, knowledge
                                                            management, decision support systems, visual interfac-      IMRT planning on adaptive volume struc-
A Multi-Objective Evolutionary Algorithm                                                                                tures – a significant advance of computa-
                                                            es, interactive navigation, real-life applications.
for Scheduling and Inspection Planning in                   (26 pages, 2003)                                            tional complexity
Software Development Projects                                                                                           Keywords: Intensity-modulated radiation therapy
Key words: multiple objective programming, project                                                                      (IMRT), inverse treatment planning, adaptive volume
management and scheduling, software development,            51. O. Iliev, V. Laptev
                                                                                                                        structures, hierarchical clustering, local refinement,
evolutionary algorithms, efficient set                      On Numerical Simulation of Flow Through                     adaptive clustering, convex programming, mesh gen-
(29 pages, 2003)                                            Oil Filters                                                 eration, multi-grid methods
                                                            Keywords: oil filters, coupled flow in plain and porous     (24 pages, 2004)
                                                            media, Navier-Stokes, Brinkman, numerical simulation
                                                            (8 pages, 2003)
61. D. Kehrwald                                              70. W. Dörfler, O. Iliev, D. Stoyanov, D. Vassileva        79. N. Ettrich
Parallel lattice Boltzmann simulation                        On Efficient Simulation of Non-Newto-                      Generation of surface elevation models for
of complex flows                                             nian Flow in Saturated Porous Media with a                 urban drainage simulation
Keywords: Lattice Boltzmann methods, parallel com-           Multigrid Adaptive Refinement Solver                       Keywords: Flooding, simulation, urban elevation
puting, microstructure simulation, virtual material de-      Keywords: Nonlinear multigrid, adaptive renement,          models, laser scanning
sign, pseudo-plastic fluids, liquid composite moulding       non-Newtonian in porous media                              (22 pages, 2005)
(12 pages, 2004)                                             (25 pages, 2004)
                                                                                                                        80. H. Andrä, J. Linn, I. Matei, I. Shklyar,
62. O. Iliev, J. Linn, M. Moog, D. Niedziela,                71. J. Kalcsics, S. Nickel, M. Schröder                        K. Steiner, E. Teichmann
    V. Starikovicius                                         Towards a Unified Territory Design Ap-                     OPTCAST – Entwicklung adäquater Struk-
On the Performance of Certain Iterative                      proach – Applications, Algorithms and GIS                  turoptimierungsverfahren für Gießereien
Solvers for Coupled Systems Arising in                       Integration                                                Technischer Bericht (KURZFASSUNG)
Discretization of Non-Newtonian Flow                         Keywords: territory desgin, political districting, sales   Keywords: Topologieoptimierung, Level-Set-Methode,
Equations                                                    territory alignment, optimization algorithms, Geo-         Gießprozesssimulation, Gießtechnische Restriktionen,
Keywords: Performance of iterative solvers, Precondi-        graphical Information Systems                              CAE-Kette zur Strukturoptimierung
tioners, Non-Newtonian flow                                  (40 pages, 2005)                                           (77 pages, 2005)
(17 pages, 2004)
                                                             72. K. Schladitz, S. Peters, D. Reinel-Bitzer,             81. N. Marheineke, R. Wegener
63. R. Ciegis, O. Iliev, S. Rief, K. Steiner                     A. Wiegmann, J. Ohser                                  Fiber Dynamics in Turbulent Flows
On Modelling and Simulation of Different                     Design of acoustic trim based on ­geometric                Part I: General Modeling Framework
Regimes for Liquid Polymer Moulding                          modeling and flow simulation for non-woven                  Keywords: fiber-fluid interaction; Cosserat rod; turbu-
Keywords: Liquid Polymer Moulding, Modelling, Simu-          Keywords: random system of fibers, Poisson line             lence modeling; Kolmogorov’s energy spectrum; dou-
lation, Infiltration, Front Propagation, non-Newtonian        process, flow resistivity, acoustic absorption, Lattice-    ble-velocity correlations; differentiable Gaussian fields
flow in porous media                                          Boltzmann method, non-woven                                (20 pages, 2005)
(43 pages, 2004)                                             (21 pages, 2005)                                           Part II: Specific Taylor Drag
                                                                                                                         Keywords: flexible fibers; k- e turbulence model; fi-
                                                                                                                         ber-turbulence interaction scales; air drag; random
64. T. Hanne, H. Neu                                         73. V. Rutka, A. Wiegmann                                  ­Gaussian aerodynamic force; white noise; stochastic
Simulating Human Resources in                                Explicit Jump Immersed Interface Method                     differential equations; ARMA process
Software Development Processes                               for virtual material design of the effective                (18 pages, 2005)
Keywords: Human resource modeling, software pro-             elastic moduli of composite materials
cess, productivity, human factors, learning curve            Keywords: virtual material design, explicit jump im-       82. C. H. Lampert, O. Wirjadi
(14 pages, 2004)                                             mersed interface method, effective elastic moduli,
                                                             composite materials
                                                                                                                        An Optimal Non-Orthogonal Separation of
                                                             (22 pages, 2005)                                           the Anisotropic Gaussian Convolution Filter
65. O. Iliev, A. Mikelic, P. Popov                                                                                      Keywords: Anisotropic Gaussian filter, linear filtering, ori-
Fluid structure interaction problems in de-                                                                             entation space, nD image processing, separable filters
formable porous media: Toward permeabil-                     74. T. Hanne                                               (25 pages, 2005)
ity of deformable porous media                               Eine Übersicht zum Scheduling von Baustellen
 Keywords: fluid-structure interaction, deformable po-       Keywords: Projektplanung, Scheduling, Bauplanung,          83. H. Andrä, D. Stoyanov
rous media, upscaling, linear elasticity, stokes, finite     Bauindustrie
elements                                                     (32 pages, 2005)                                           Error indicators in the parallel finite ele-
(28 pages, 2004)                                                                                                        ment solver for linear elasticity DDFEM
                                                                                                                        Keywords: linear elasticity, finite element method, hier-
                                                             75. J. Linn                                                archical shape functions, domain decom-position, par-
66. F. Gaspar, O. Iliev, F. Lisbona, A. Naumovich,           The Folgar-Tucker Model as a ­Differetial                  allel implementation, a posteriori error estimates
    P. Vabishchevich                                         Algebraic System for Fiber Orientation                     (21 pages, 2006)
On numerical solution of 1-D poroelasticity                  ­Calculation
equations in a multilayered domain                           Keywords: fiber orientation, Folgar–Tucker model, in-      84. M. Schröder, I. Solchenbach
Keywords: poroelasticity, multilayered material, finite      variants, algebraic constraints, phase space, trace sta-
                                                             bility
                                                                                                                        Optimization of Transfer Quality in
volume discretization, MAC type grid
(41 pages, 2004)                                             (15 pages, 2005)                                           Regional Public Transit
                                                                                                                        Keywords: public transit, transfer quality, quadratic
                                                                                                                        assignment problem
67. J. Ohser, K. Schladitz, K. Koch, M. Nöthe                76. M. Speckert, K. Dreßler, H. Mauch,                     (16 pages, 2006)
Diffraction by image processing and its ap-                      A. Lion, G. J. Wierda
plication in materials science                               Simulation eines neuartigen Prüf­systems                   85. A. Naumovich, F. J. Gaspar
Keywords: porous microstructure, image analysis, ran-        für Achserprobungen durch MKS-Model-
                                                                                                                        On a multigrid solver for the three-dimen-
dom set, fast Fourier transform, power spectrum,             lierung einschließlich ­Regelung
Bartlett spectrum
                                                                                                                        sional Biot poroelasticity system in multi-
                                                              Keywords: virtual test rig, suspension testing, multi-
(13 pages, 2004)                                             body simulation, modeling hexapod test rig, optimiza-
                                                                                                                        layered domains
                                                             tion of test rig configuration                             Keywords: poroelasticity, interface problem, multigrid,
                                                             (20 pages, 2005)                                           operator-dependent prolongation
68. H. Neunzert                                                                                                         (11 pages, 2006)
Mathematics as a Technology: Challenges
for the next 10 Years                                        77. K.-H. Küfer, M. Monz, A. Scherrer, P. Süss,
                                                                 F. Alonso, A. S. A. Sultan, Th. Bortfeld,              86. S. Panda, R. Wegener, N. Marheineke
Keywords: applied mathematics, technology, modelling,
simulation, visualization, optimization, glass processing,       D. Craft, Chr. Thieke                                  Slender Body Theory for the Dynamics of
spinning processes, fiber-fluid interaction, trubulence      Multicriteria optimization in intensity mod-               Curved Viscous Fibers
effects, topological optimization, multicriteria optimiza-                                                              Keywords: curved viscous fibers; fluid dynamics; Navier-
                                                             ulated radiotherapy planning
tion, Uncertainty and Risk, financial mathematics, Mal-                                                                 Stokes equations; free boundary value problem; asymp-
                                                             Keywords: multicriteria optimization, extreme solutions,
liavin calculus, Monte-Carlo methods, virtual material                                                                  totic expansions; slender body theory
                                                             real-time decision making, adaptive approximation
design, filtration, bio-informatics, system biology                                                                     (14 pages, 2006)
                                                             schemes, clustering methods, IMRT planning, reverse
(29 pages, 2004)
                                                             engineering
                                                             (51 pages, 2005)                                           87. E. Ivanov, H. Andrä, A. Kudryavtsev
69. R. Ewing, O. Iliev, R. Lazarov,                                                                                     Domain Decomposition Approach for Auto-
    A. Naumovich                                             78. S. Amstutz, H. Andrä                                   matic Parallel Generation of Tetrahedral Grids
On convergence of certain finite difference                  A new algorithm for topology optimization                  Key words: Grid Generation, Unstructured Grid, Delau-
discretizations for 1­D poroelasticity inter-                                                                           nay Triangulation, Parallel Programming, Domain De-
                                                             using a level-set method
face problems                                                                                                           composition, Load Balancing
                                                             Keywords: shape optimization, topology optimization,
                                                                                                                        (18 pages, 2006)
Keywords: poroelasticity, multilayered material, finite      topological sensitivity, level-set
volume discretizations, MAC type grid, error estimates       (22 pages, 2005)
(26 pages,2004)
88. S. Tiwari, S. Antonov, D. Hietel, J. Kuhnert,          97. A. Dreyer                                                 107. Z. Drezner, S. Nickel
    R. Wegener                                             Interval Methods for Analog Circiuts                          Solving the ordered one-median problem in
A Meshfree Method for Simulations of Inter-                Keywords: interval arithmetic, analog circuits, tolerance     the plane
actions between Fluids and Flexible Structures             analysis, parametric linear systems, frequency response,      Keywords: planar location, global optimization, ordered
Key words: Meshfree Method, FPM, Fluid Structure In-       symbolic analysis, CAD, computer algebra                      median, big triangle small triangle method, bounds,
teraction, Sheet of Paper, Dynamical Coupling              (36 pages, 2006)                                              numerical experiments
(16 pages, 2006)                                                                                                         (21 pages, 2007)
                                                           98. N. Weigel, S. Weihe, G. Bitsch, K. Dreßler
89. R. Ciegis , O. Iliev, V. Starikovicius, K. Steiner     Usage of Simulation for Design and Optimi-                    108. Th. Götz, A. Klar, A. Unterreiter,
Numerical Algorithms for Solving Problems                  zation of Testing                                                  R. We gener
of Multiphase Flows in Porous Media                        Keywords: Vehicle test rigs, MBS, control, hydraulics,        Numerical evidance for the non-­existing of
Keywords: nonlinear algorithms, finite-volume method,      testing philosophy                                            solutions of the equations desribing rota-
software tools, porous media, flows                        (14 pages, 2006)
                                                                                                                         tional fiber spinning
(16 pages, 2006)                                                                                                         Keywords: rotational fiber spinning, viscous fibers,
                                                           99. H. Lang, G. Bitsch, K. Dreßler, M. Speckert               boundary value problem, existence of solutions
90. D. Niedziela, O. Iliev, A. Latz                        Comparison of the solutions of the elastic                    (11 pages, 2007)

On 3D Numerical Simulations of Viscoelastic                and elastoplastic boundary value problems
Fluids                                                     Keywords: Elastic BVP, elastoplastic BVP, variational         109. Ph. Süss, K.-H. Küfer
Keywords: non-Newtonian fluids, anisotropic viscosity,      inequalities, rate-independency, hysteresis, linear kine-     Smooth intensity maps and the Bortfeld-
integral constitutive equation                             matic hardening, stop- and play-operator
                                                                                                                         Boyer sequencer
(18 pages, 2006)                                           (21 pages, 2006)
                                                                                                                         Keywords: probabilistic analysis, intensity modulated
                                                                                                                         radiotherapy treatment (IMRT), IMRT plan application,
91. A. Winterfeld                                          100. M. Speckert, K. Dreßler, H. Mauch                        step-and-shoot sequencing
                                                           MBS Simulation of a hexapod based sus-                        (8 pages, 2007)
Application of general semi-infinite Pro-
gramming to Lapidary Cutting Problems                      pension test rig
Keywords: large scale optimization, nonlinear program-     Keywords: Test rig, MBS simulation, suspension,
ming, general semi-infinite optimization, design center-    hydraulics, controlling, design optimization
ing, clustering                                            (12 pages, 2006)                                              Status quo: March 2007
(26 pages, 2006)
                                                           101. S. Azizi Sultan, K.-H. Küfer
92. J. Orlik, A. Ostrovska                                 A dynamic algorithm for beam orientations
Space-Time Finite Element Approximation                    in multicriteria IMRT planning
and Numerical Solution of Hereditary Lin-                  Keywords: radiotherapy planning, beam orientation
ear Viscoelasticity Problems                               optimization, dynamic approach, evolutionary algo-
                                                           rithm, global optimization
Keywords: hereditary viscoelasticity; kern approxima-
                                                           (14 pages, 2006)
tion by interpolation; space-time finite element approx-
imation, stability and a priori estimate
(24 pages, 2006)                                           102. T. Götz, A. Klar, N. Marheineke, R. Wegener
                                                           A Stochastic Model for the Fiber Lay-down
93. V. Rutka, A. Wiegmann, H. Andrä                        Process in the Nonwoven Production
EJIIM for Calculation of effective Elastic                 Keywords: fiber dynamics, stochastic Hamiltonian sys-
Moduli in 3D Linear Elasticity                             tem, stochastic averaging
Keywords: Elliptic PDE, linear elasticity, irregular do-   (17 pages, 2006)
main, finite differences, fast solvers, effective elas-
tic moduli                                                 103. Ph. Süss, K.-H. Küfer
(24 pages, 2006)
                                                           Balancing control and simplicity: a variable
                                                           aggregation method in intensity modulated
94. A. Wiegmann, A. Zemitis                                radiation therapy planning
EJ-HEAT: A Fast Explicit Jump ­Harmonic                    Keywords: IMRT planning, variable aggregation, clus-
­ veraging Solver for the Effective Heat
A                                                          tering methods
                                                           (22 pages, 2006)
Conductivity of Composite Materials
 Keywords: Stationary heat equation, effective thermal
conductivity, explicit jump, discontinuous coefficients,   104. A. Beaudry, G. Laporte, T. Melo, S. Nickel
virtual material design, microstructure simulation, EJ-    Dynamic transportation of patients in hos-
HEAT
                                                           pitals
(21 pages, 2006)
                                                           Keywords: in-house hospital transportation, dial-a-ride,
                                                           dynamic mode, tabu search
95. A. Naumovich                                           (37 pages, 2006)
On a finite volume discretization of the
three-dimensional Biot poroelasticity sys-                 105. Th. Hanne
tem in multilayered domains                                Applying multiobjective evolutionary algo-
Keywords: Biot poroelasticity system, interface prob-      rithms in industrial projects
lems, finite volume discretization, finite difference      Keywords: multiobjective evolutionary algorithms, dis-
method.                                                    crete optimization, continuous optimization, electronic
(21 pages, 2006)                                           circuit design, semi-infinite programming, scheduling
                                                           (18 pages, 2006)
96. M. Krekel, J. Wenzel
A unified approach to Credit Default                       106. J. Franke, S. Halim
Swaption and Constant Maturity Credit De-                  Wild bootstrap tests for comparing signals
fault Swap valuation                                       and images
Keywords: LIBOR market model, credit risk, Credit De-      Keywords: wild bootstrap test, texture classification,
fault Swaption, Constant Maturity Credit Default Swap-     textile quality control, defect detection, kernel estimate,
method.                                                    nonparametric regression
(43 pages, 2006)
                                                           (13 pages, 2007
Sie können auch lesen