Bulletin Lebensmittel - Ernährung und Gesundheit L'alimentation - nutrition et santé - VSH-AEU
←
→
Transkription von Seiteninhalten
Wenn Ihr Browser die Seite nicht korrekt rendert, bitte, lesen Sie den Inhalt der Seite unten
Vereinigung der Schweizerischen Hochschuldozierenden VSH AEU Association Suisse des Enseignant-e-s d’Université Bulletin Lebensmittel – Ernährung und Gesundheit L’alimentation – nutrition et santé Mit Beiträgen von – avec des contributions de Michael Teuber und Leo Meile Erich J. Windhab Fabian Wahl Dietrich Knorr Christian N. Schwab, Francesco Stellacci Matthias S. Meier, Franziska Götze, Evelyn Markoni, Elisabeth Eugster, Daniel Heine, Katrin Kopf-Bolanz, Christoph Denkel Diego Bryner Carla Horvath, Joelle Houriet, Christian Wolfrum Stefan Bürki und Roland Stähli Shana J. Sturla Berichte der Hochschulen 47. Jahrgang, Nr. 1 – April 2021 47ème année, no 1 – avril 2021 ISSN 1663–9898
Table of contents Department of Chemistry and Applied Biosciences Professor of Molecular Medicine The Department of Chemistry and Applied Biosciences (www.chab.ethz.ch) at ETH Zurich invites applications for the above-mentioned position within the Institute of Pharmaceutical Sciences. Candidates should have a strong scientific profile related to the discovery and validation of drug targets or identification of novel therapeutic agents. The fields of research associated with this position should ideally focus on cancer and/or chronic inflammatory diseases. But other disease areas with the need for improved pharmacotherapies would also be suitable. These disease areas include but are not limited to infectious and haematological diseases, neurological diseases, and metabolic and cardiovascular diseases. The successful candidate should be involved in translational research activities at least at the preclinical level. A first degree in medicine or pharmacy would be preferable, but non-health professionals with an outstanding research and teaching track record in molecular medicine will be considered as well. A strong commitment to the teaching activities of the Institute is expected. In general, at ETH Zurich undergraduate level courses are taught in German or English and graduate level courses are taught in English. Please apply online: www.facultyaffairs.ethz.ch Applications should include a curriculum vitae, a list of publications, a statement of future research and teaching interests, and a description of the three most important achievements. The letter of application should be addressed to the President of ETH Zurich, Prof. Dr. Joël Mesot. The closing date for applications is 30 April 2021. ETH Zurich is an equal opportunity and family friendly employer, strives to increase the number of women professors, and is responsive to the needs of dual career couples. Titelbild: Photo by Edgar Castrejon on Unsplash ii Stellenausschreibung – Poste à pourvoir
Inhaltsverzeichnis – Table des matières Editorial 2 Gernot Kostorz Lebensmittel – Ernährung und Gesundheit L’alimentation – nutrition et santé Lebensmittel und Ernährung: Lehre und Forschung in der Schweiz 3 Michael Teuber und Leo Meile Plant based premium food innovation horizon for the Swiss Food System in a Global Context 5 Erich J. Windhab Fostering nutrition research in Switzerland 13 Fabian Wahl Food processing: Paving the way for sustainable nourishment 17 Dietrich Knorr Bringing new science to food 21 Christian N. Schwab, Francesco Stellacci Ernährungssysteme nachhaltiger gestalten Einblicke in die transdisziplinären Forschungsaktivitäten der Berner Fachhochschule, Fachbereich Food Science & Management 25 Matthias S. Meier, Franziska Götze, Evelyn Markoni, Elisabeth Eugster, Daniel Heine, Katrin Kopf-Bolanz, Christoph Denkel Entwicklung von veganem Käse – Vielfalt der Rohstoffe und Geduld mit den Prozessen 36 Diego Bryner Targeted nutrition to promote metabolic health – the untapped power of phytochemicals 41 Carla Horvath, Joelle Houriet, Christian Wolfrum Der Bachelor-Studiengang in Lebensmittelwissenschaften an der BFH-HAFL wird reformiert 47 Stefan Bürki und Roland Stähli The Food Science study programme at ETH Zürich 53 Shana J. Sturla Jahresberichte der Hochschulen / Rapports annuels des Hautes Ecoles 2020 55 Stellenausschreibung – Poste à pourvoir ii VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 1
Table of contents Editorial Gernot Kostorz Liebe Leserin, lieber Leser Wenn Dietrich Knorr in diesem Heft Grillparzers derungsmassnahmen in der Schweiz, unter der Ausspruch «Essen muss der Mensch» zitiert, ist da- evise «Gesunde Ernährung». Dietrich Knorr schil- D mit sicher nicht gemeint, Grillparzer habe da etwas dert den Weg und die Aufgaben der Lebensmittel- ganz Neues oder Unveränderliches entdeckt... Die Verfahrenstechnik. Christian Schwab und Francesco Einsichten in die Zusammenhänge, Quantität und Stellacci gehen auf die System-orientierten Aspekte Qualität der Ernährung des Menschen zu sichern, der Nahrungskette ein. Matthias Meier et al. schil- haben sich nämlich seitdem erheblich vertieft. Seit dern die Forschungsaktivitäten eines engagierten den 1990-er Jahren wurden im Hochschulbereich Fachbereichs an der Berner Fachhochschule, wäh- (nicht nur, aber auch) in der Schweiz Forschung und rend Diego Bryner interessante Forschungs- und Lehre über Lebensmittel deutlich intensiviert, wie Entwicklungsresultate aus der Konsumenten-orien- im vorliegenden Heft der historische Rückblick von tierten Praxis beschreibt. Einen Einblick in For- Michael Teuber und Leo Meile wie auch der Beitrag schungen im Interesse einer Vermeidung von Über- von Erich Windhab schildern. Es war an der Zeit, gewicht und Adipositas geben schliesslich Carla einen im Umfang bescheidenen, aber dennoch auf- Horvath et al. schlussreichen Überblick mit Rück- und Vorschau zum Stand von Forschung und Lehre über Lebens- Nach diesem Überblick über die Forschungsland- mittel zu versuchen, womit die stoffliche Seite der schaft erfahren wir noch, wie man an der Berner Lebenserhaltung im Vordergrund steht. Insofern Fachhochschule und an der ETH Zürich das Fach werden im Kontext durchaus relevante ethische Fra- Lebensmittelwissenschaft studieren kann. gen nicht ausführlich diskutiert. Es geht vor allem um die Erzielung und Sicherung einer möglichst für Wie üblich, bringt das erste Heft eines Jahrgangs alle Menschen dieses Planeten hinreichenden Er- kurze Jahresberichte der universitären Hochschulen nährung, ohne irreparable Schäden zu verursachen, – deren Dozierende in der VSH-AEU ihre Vertretung wobei die landwirtschaftlich und technologisch her- finden. Wir halten diese Tradition auch bei fort- gestellten Lebensmittel zudem möglichst der Ge- schreitender Digitalisierung nicht für obsolet, geben sundheit förderlich sein sollen. doch diese Texte in starker, übersichtlicher Verkür- zung wieder, was die einzelnen Hochschulen für be- Die Uno hat sich 2015 einen Katalog von nachhalti- sonders mitteilenswert halten. gen Entwicklungszielen («2030 Agenda») «verord- net», darunter insbesondere «Goal 2: Zero Hunger» Ich danke allen, die zu diesem Heft beigetragen und «Goal 3: Good Health and Well-Being». Erich haben, für die gute Zusammenarbeit und insbe- Windhab betont in seinem Beitrag, dass Fortschrit- sondere Erich Windhab für Rat, Unterstützung und te auch in diesen Gebieten (erneut muss gesagt Hilfe in der Konzept- und Entstehungsphase. werden, «nicht nur, aber auch») durch die nun im zweiten Jahr alles beherrschende Pandemie erheb- Ihnen, liebe Leserin, lieber Leser, wünsche ich eine lich behindert wurden, schildert dann aber den be- angenehme Lektüre und Geduld und Ausdauer bei merkenswerten schweizerischen Fortschritt bei der der Erhaltung Ihrer Gesundheit – nicht nur, aber Definition und Erweiterung des Innovationshori- auch die Ernährung betreffend. zonts bei pflanzenbasierten Entwicklungen. Fabian Wahl beschreibt sodann die in den letzten Jahren Mit allen guten Wünschen von Agroscope betreuten Koordinations- und För- Ihr Gernot Kostorz 2 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Table of contents Lebensmittel und Ernährung: Lehre und Forschung in der Schweiz Michael Teuber* und Leo Meile** Als der Bundesrat 1990 einen von uns (MT) zum Nach- prägender Schritt für Ausbildung und Forschung folger von ETH-Prof. Wilhelm Schmidt-Lorenz auf den erfolgte dann Anfang der 2000-er Jahren in der Er- Lehrstuhl für Lebensmittelmikrobiologie im Institut neuerung der europaweiten Hochschulbildung: der für Lebensmittelwissenschaft in der Abteilung für «Bologna-Reform» mit der Einführung des Bache- Landwirtschaft berief, fand dieser eine kleine, über- lor-Mastersystems an Universitäten und verzögert schaubare, aber sehr aktive Gemeinschaft von Ein- auch an Fachhochschulen, die fortan teilweise im richtungen vor, die sich mit Forschung und Lehre im Status «Applied University» lehrten und forschten. Bereich Lebensmittel befassten. An erster Stelle das Zusammen mit einem starken Wachstum des ETH- Institut an der ETH Zürich, das für die Ausbildung Institutes (heute IFNH: Institute of Food, Nutrition der Lebensmittelingenieure verantwortlich zeichnete, and Health) und dem Kompetenzzentrum «World zu der Zeit mit durchschnittlich 50 bis 70 Studienan- Food System Center» mit ETHZ, Empa, EAWAG-Be- fängern. Das Institut war mit allen notwendigen Fä- teiligten, den aufstrebenden Instituten an den ehe- chern ausgestattet: Lebensmittelverfahrenstechnik (ab 1992 Prof. Erich Windhab), Lebensmitteltechnologie * Bühlstrasse 26, 8125 Zollikerberg. (ab 1990 Prof. Felix Escher), Lebensmittelchemie (ab E-mail: michael.teuber@hest.ethz.ch 1990 Prof. Renato Amado), Milchwissenschaft (ab Michael Teuber, Dr. rer. nat., Professor emeritus, war ab 1971 Prof. Zdenko P uhan), Lebensmittelmikrobiologie 1990 bis zur Emeritierung 2002 ordentlicher Professor für (ab 1990 MT), und Humanernährung (ab 1994 Prof. Lebensmittelmikrobiologie an der ETH Zürich. Nach der Richard Hurrell). Daneben gab es einzelne Fächer an Promotion als Biologe an der Universität München war er anderen Universitäten (z.B. Lebensmittelhygiene in von 1962 bis 1970 Assistent und Postdoc an der Bayerischen der Veterinärmedizinischen Fakultät der Universität Landesanstalt für Bodenkultur, am Max-von-Pettenkofer- Institut für Hygiene und Medizinische Mikrobiologie der Universität Zürich, Humanernährung an der Universität Basel). München, am Department of Molecular Biology des Albert Einstein Das Bundesamt für Landwirtschaft (BLW) betrieb For- College of Medicine in New York und am Lehrstuhl für Mikrobiologie der schungsinstitute für Milch und Fleisch in Bern-Liebe- TU München, wo er sich 1971 in Mikrobiologie habilitierte. 1976 bis 1990 feld und später in Posieux, und für Wein in Wädenswil leitete er als Direktor und Professor das Institut für Mikrobiologie der und Changins. Trinkwasser wurde von der EAWAG in Bundesanstalt für Milchforschung in Kiel. 1978 wurde er zum Honorar Dübendorf bearbeitet. Die Wissenschaftler des Berei- professor der Universität Kiel ernannt. Er befasste sich mit der Biochemie, Genetik und praktischen Bedeutung pathogener wie nützlicher Mikro ches hatten sich in mehreren Gesellschaften organi- organismen in Lebensmitteln. Ein Schwerpunkt war die Verbreitung siert, am aktivsten waren die SGLH (Schweiz. Gesell- Antibiotikum-resistenter Keime mit der Nahrung. Ab 1991 war er schaft für Lebensmittelhygiene) mit einer bis heute Mitglied der Zentralen Kommission für Biologische Sicherheit beim jährlich an der ETH durchgeführten Tagung, und die Robert-Koch-Institut Berlin, der Task Force «Novel Food» beim Intern. SGLWT (Schweiz. Gesellschaft für Lebensmittelwis- Life Science Institute in Brüssel, ab 1996 Koordinator des Moduls «Food Biotechnology» des SPP «Biotechnology» des Schweizer Nationalfonds. senschaft und Technologie), ebenfalls mit jährlichen Tagungen an unterschiedlichen Orten, oft in promi- ** ETH Zürich, Institut für Lebensmittelwissenschaften, Ernährung und nenten Lebensmittel-Produktionsbetrieben. Gesundheit, Schmelzbergstrasse 7, 8092 Zürich. E-mail: leo.meile@hest.ethz.ch In den 1990-er Jahren legte der Schweizerische Na- tionalfonds ein Sonderprogramm «Lebensmittel- Leo Meile, Dr. sc. nat. ETH, war Titularprofessor im Dept. Health Science and Technology (D-HEST) der ETHZ bis zur biotechnologie» auf, das von Prof. Oreste Ghisalba Emeritierung 2018. Nach dem Biologiestudium und der initiiert und betreut wurde. In diesem Forschungs- Promotion in Mikrobiologie an der ETHZ forschte er als Programm konnten viele der genannten Einrichtun- Nationalfonds-Stipendiat an der Ohio State University in gen kooperieren, wobei schweizweit intensive und Columbus (USA) und weiter an der ETHZ als Forschungsleiter fruchtbare Beziehungen aufgebaut wurden. im Bereich Mikrobiologie, Lebensmittelmikrobiologie (mit Habilitation 1999) und Lebensmittelbiotechnologie. Forschungsschwerpunkte waren u. a. Antibiotika-Resistenz-Mechanismen und Biodiversität Ein weiterer wichtiger Schritt war dann ab 1995 die von Mikroorganismen aus Lebensmitteln, sowie die Entwicklung von Etablierung von Fachhochschulen in der Schweiz. Starterkulturen für Lebensmittel-Fermentationen und Mikroorganismen Dadurch konnten nun auf dieser Ebene vor allem zur Biopräservation von Lebensmitteln. Neben umfangreicher Lehre auch Studiengänge für Lebensmitteltechnologie an der ETH engagierte er sich auch in CH-Lebensmittel-relevanten aufgebaut werden (Wädenswil, Sion) und solche an Netzwerken, u.a. als Präsident der SGLH, dem SVIAL und der Swiss Food Research-Plattform. der Schnittstelle zur Landwirtschaft (Zollikofen). Ein VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 3
Table of contents Michael Teuber und Leo Meile | Lebensmittel und Ernährung: Lehre und Forschung in der Schweiz maligen Fachhochschulen, dem BLW-Kompetenz- gramme im Lebensmittelbereich, wo sich auch die zentrum «Agroscope» und dem Forschungsplatz Schweizer Forschung stark beteiligt. Gerade die For- Lausanne (u.a. mit EPFL, UNIL und Nestlé) hat sich schungszusammenarbeit von Hochschulen und der in der Schweiz die Lebensmittelforschung breit und Industrie mit dem Ziel Innovationen zu kreieren und messbar erfolgreich ausgedehnt. Wissens-und Technologietransfer zu fördern, lag Dr. Jean-Claude Villettaz besonders am Herzen; er trug Förderungen von angewandten Projekten zwischen massgeblich dazu bei, dass diese Rolle heute die Forschungsinstituten und der Industrie wurden Organisation «Swiss Food Research» in Zusammen- durch Projekte der KTI (Kommission für Technologie arbeit mit «Innosuisse» sehr erfolgreich ausführt. und Innovation) ermöglicht, eine staatliche Förder- stelle für Innovationen, welche später in die Agen- Die hier vorgestellten Projekte, Institute und For- tur «Innosuisse» überführt wurde; hinzu kamen und schenden sind ein Ausschnitt aus dem beschriebe- kommen auch verschiedene EU-Forschungs-Pro- nen Schaffen und dürften für sich selbst sprechen. n 4 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Table of contents Plant based premium food innovation horizon for the Swiss Food System in a Global Context Erich J. Windhab* 1. Introduction A rising star food domain since few years is the “plant- The 2030 Agenda of the UN with its 17 sustainability based foods” for which consumer demand is increas- development goals got out of step in 2020 due to the ing at a significant rate. In 2019, the total retail mar- COVID-19 pandemic, and some Sustainable Devel- ket for plant-based foods in the US was worth nearly opment Goals (SDGs) currently seem out of reach. $4.5 bn, and dollar sales have grown by 31 % over the A “recalibration” of the SDGs is in lively (UN) discus- past two years. Plant-based protein, and derived veg- sion. From different sides, in particular, increased pri- etarian alternatives, make up a significant portion of oritization and investments in public services, social this market. Meanwhile 44 % of US consumers have protection and especially in the food and health sys- been identified as flexitarians, in Switzerland about tems are called for, which reflects the global impact 25 % are counted as such. To some extent the role of of the pandemic. Both the disease and the fear of plant-based protein may have also been expedited as disease have triggered substantial global economic a result of the corona pandemic, as consumers across and social impacts, along with restrictions on interna- the world became increasingly aware of their personal tional travel imposed by most countries, the quaran- health and immunity, as well as how and where their tining of millions of people, dramatic declines in the food is sourced. For a growing number of consum- tourism and hospitality industries, and disruption of ers, rise of plant-based alternatives is attributed to an supply chains for food, medicines, and manufactured increased focus on ethical (e.g. animal welfare) and products. COVID-19 is compelling policy makers to sustainable consumption. For others, like most of the make urgent decisions to ensure food supply chains flexitarians, taste and texture still rule. continue to function, but the fundamental task is to address these immediate disruptions while also Against this background, it gets obvious that the investing in the long-term goal of a resilient, sustaina- plant protein space is a growing source of product and ble and productive global food system.1 Food systems' complexity requires a holistic and * ETH Zürich, Laboratorium für Lebensmittel-Verfahrenstechnik (Food coordinated approach to understand the impact of Process Engineering, FPE); Institut für Lebensmittel, Ernährung und innovative building block implementation and derive Gesundheit (IFNH), Schmelzbergstrasse 9, 8092 Zürich. overarching optimization rules for added value gen- E-mail: erich.windhab@hest.ethz.ch eration. Most food security and nutrition challenges https://fpe.ethz.ch are complex problems whose solutions are contested Erich J. Windhab, Dr.-Ing., ist ordentlicher Professor and which transcend disciplinary, divisional, and insti- für Lebensmittel-Verfahrenstechnik an der ETH Zürich. tutional frontiers. In our increasingly globalized food Studium des Chemie-Ingenieurwesens (Chemical systems, challenges result from interactions across Engineering) an der Technischen Universität Karlsruhe; Promotion 1985 in Mechanischer Verfahrenstechnik und different scales and levels. They require integrated Fluiddynamik/ Rheologie; Eigenes Ingenieurunternehmen actions taken by all stakeholders at local, national, für verfahrenstechnische Entwicklungen (1983); Aufbau des Deutschen regional, and global levels, by both public and private Instituts für Lebensmitteltechnik (DIL) in Quakenbrück (D) als Wissen actors, and across multiple boundaries. Considering schaftlicher Direktor und stellv. Institutsleiter (1986–1992); Dozent für direct and indirect dependencies of reactions across Strömungsmechanik und Rheologie an der TU München (1988–1993); Ordinarius für Lebensmittel-Verfahrenstechnik an der ETH Zürich (seit an entire multidimensional food value chain (= food 1992). value network or food system) is of utmost relevance Mitgliedschaften in Vereinigungen, Akademien sowie wissenschaftlichen taking agriculture, food processing, transport, retail, und strategischen Beratungs- und Aufsichtsratsgremien der internatio consumer, health, trade, policy, environment and nalen Lebensmittel- und Apparateindustrie; Preisträger (u.a. Blaise Pascal infrastructure as major building blocks into account. Medaille der Europäischen Akademie der Wissenschaften 2003). A synergetic merging of these rather than a destruc- Forschungsprojekte, (ca. 600) Publikationen und (ca. 90) Patente zu: (a) Prozess-Struktur-Eigenschafts-Beziehungen von Lebensmittel-/ tive clashing has to be the ultimate goal. Biosystemen; (b) Design- und Skalierungsregeln für Verarbeitungsprozesse in der Lebensmittel-, Kosmetik und Pharmaindustrie vom Labor- bis Fabrikmassstab sowie (c) Entwicklung techno-funktionalisierender Lebensmittel-Produktionssysteme (Verfahren, Vorrichtungen und Produkte). – Initiator und Mitgründer von fünf Unternehmen (z.T. Start- 1U N Sustainable Development Goals: https://www.un.org/sustainable- ups). development/ VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 5
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context technology innovations entering the global food sys- has generally kept pace with population growth, more tem and thus significantly impacting on many of the than 820 million people were lacking sufficient food food system building blocks from the agricultural pri- before the Covid-19 pandemic appeared, and many mary production of protein-rich plant species via their more consume either low-quality diets or too much processing and transformation into food products to food. As a result of the pandemic impact, according their consumption and digestion, the latter including to estimates of the UN's World Food Program (WFP), the more plant-food-specific adaptation of the human by December 2020, additional 271.8 million people in microbiome. countries where the WFP operates are acutely food insecure or directly at risk of becoming so due to the Such overarching impact gives rise to the develop- aggravating effect of the COVID-19 crisis.3 ment of new business cases and in the context of the corona pandemic, chances for the introduction While unhealthy diets pose a big risk to morbidity of new strategies fostering resilience and improved and mortality, the global food production threatens self-supply demand. This can reach dimensions of climate stability and ecosystem resilience and con- regional, national and global strategic interests, which stitutes the single largest driver of environmental shall be addressed in further detail below. degradation and violation of planetary boundaries. Accordingly, a radical transformation of the global 2. Global food system perspective food system is urgently required. Without action, the The global food system has to be considered in the world risks failing to meet the UN Sustainable Devel- context of globalization and superimposed popula- opment Goals (SDGs), and the coming generation will tion growth, urbanization, growing wealth, changing inherit a planet that has been severely degraded with consumption patterns as well as climate change, pol- its population increasingly suffering from malnutri- lution and depletion of natural resources. During the tion and preventable disease. past three decades, developments in food systems have yielded many positive results, especially in devel- According to the 2019 study report of the EAT Lancet oping countries. These results include the expansion Commission there is substantial scientific evidence of off-farm employment opportunities as food indus- that links diets to human health and environmental tries have developed, and the widening of food choices sustainability. Yet the absence of globally agreed sci- beyond local staples, thus satisfying consumers’ pref- entific targets for healthy diets and sustainable food erences in terms of sensorial and nutritional quality.2 production has hindered large-scale and coordinated efforts to transform the global food system.4 The However, the associated rapid structural transforma- commission’s analysis suggests that staying within a tions have also resulted in increasing and significant safe operating space for the development of future challenges, with potentially wide-reaching conse- food systems requires a combination of substantial quences for the state of food security and nutrition. shifts toward mostly plant-based dietary patterns, These include (i) the many high-calorie and low nutri- dramatic reductions in food losses and waste, and tional value food items that are widely available and major improvements in food production practices. consumed, (ii) limited access of small-scale producers and agri-enterprises to viable markets, (iii) high lev- 2.1. Key factor plant proteins els of food loss and waste, (iv) increased incidences Key factor component in a plant-based future die- of food safety, (v) animal and human health issues as tary pattern with significant impact on possible envi- well as (vi) an increased energy-intensity and ecolog- ronmental sustainability improvement is the plant ical footprint associated with the industrialization of proteins which compared to their animal-originated food supply chains. counterparts show factor 2–75 lower carbon or water footprints with pulses being best in class.5 From a global perspective, it can be summed up that food is the single strongest lever with coupled opti- 3W orld Food Programme. Covid19 Level 3 emergency; Ex- ternal Situation report. https://docs.wfp.org/api/documents/ mization potential for human health and environmen- bb06a3493e85496587739785abfe5b28/download/?_ga=2. tal sustainability on Earth. However, food is currently 58019433.2144455157.16136916551437313209.1613691655 threatening both people and planet. An immense &_gac=1.215447781.1613692638.Cj0KCQiAvbiBBhD-ARIsAGM48bz- PQwmkQ4Ty9S3q3CM70CAEe9PHcmtZeJ-ItlPnrPwm9zoH54Ts9SEaAv- challenge facing humanity is to provide a growing CPEALw_wcB world population with healthy diets from sustainable 4W illett, W., Rockström, J., Loken, B., et al. (2019). Food in the food systems. While global food production of calories Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet; 393: 447 – 492. 5C arbon and water footprints of diet choices. Animal Charity Evalua- 2 F AO-Sustainable Food Systems, Concept and framework. tors: https://animalcharityevaluators.org/research/dietary-impacts/ http://www.fao.org/3/ca2079en/CA2079EN.pdf carbon-and-water-footprints-of-diet-choices/#conclusion 6 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context A long-term predicted (2050) global undersupply of matter in the soil and facilitate soil nutrients’ circu- proteins for a growing world population coupled with lation and water retention. Based on these multiple an increasing questioning of the sustainability of food functions, legume crops have high potential for con- of animal origin, which has been registered at least in servation agriculture, being functional either as grow- industrialized nations, have significantly stimulated ing crop or as crop residue.7 research and development activities on new protein sources and their technological processing in recent From the nutritional perspective, besides valuable years. In the current discussion on alternatives to protein, pulses provide fibre, as well as a significant farmed animal-based proteins, main attention is paid source of vitamins and minerals, such as iron, zinc, to proteins from legumes (e.g. peas, lentils, beans, folate, and magnesium, and consuming about 80 grams lupins), oilseeds, grains and nuts/kernels, in addition to of beans or peas per day can enhance diet quality by the most explored soy proteins that have dominated increasing intakes of these nutrients. In addition, the industrial food-product applications so far. Pea and phytochemicals, saponins, and tannins found in pulses field-bean proteins are prominently on the rise in con- possess antioxidant and anti-carcinogenic effects, indi- sideration due to their high protein content and suita- cating that pulses may have significant anti-cancer ble amino-acid profiles. Prerequisite is the technologi- effects. Pulse consumption also improves serum lipid cal mastery of (a) conditioning processes to eliminate profiles and positively affects several other cardiovas- anti-nutritional components and (b) efficient protein cular disease risk factors, such as blood pressure, plate- extraction. There is still a need for technological devel- let activity, and inflammation. Pulses are high in fibre opment in order to increase efficiency, even though and have a low glycemic index, making them particu- suitable protein isolates and concentrates are already larly beneficial to people with diabetes by assisting in available at mostly empirically optimized yields. Their maintaining healthy blood glucose and insulin levels. use in the production of plant-protein-based meat Emerging research examining the effect of pulse com- analogues and vegetable-derived milk-type beverages ponents on HIV and consumption patterns with aging and cheese has become the base of outstandingly populations indicates that pulses may have further pos- increasing food categories since mainly the “millenni- itive effects on health. In conclusion, from a nutritional als” have started the “flexitarian movement”. perspective, including pulses in the diet is a healthy way to meet dietary recommendations and is associated 2.2. Pulses as “bifunctional” protein source with reduced risk of several chronic diseases.8 With the “bifunctional” attribute we denote that leg- umes/pulses could on one side play an important role 2.3. Alternative protein sources in delivering valuable proteins in high concentration For completeness, it should also be mentioned that besides other nutritionally relevant fiber and minerals besides crops/pulses as plant protein sources there and on the other side provide multiple services in line are further alternatives from algae but also from with sustainability principles. Concerning the latter, insects which have come into focus during the past legumes/pulses contribute to reduce the emission of five years. Algae are a promising source of protein, greenhouse gases (GHG), as they release 5–7 times containing up to 70 % protein in dry matter, essential less GHG per unit area compared with other crops, amino acids and high amounts of micronutrients. The allow the sequestration of carbon in soils (SOC) with blue alga Arthrospira (= cyanobacterium also known averaged values from 7.21 to 23.6 g C kg−1 Dry Matter, as Spirulina) and the green alga Chlorella vulgaris are and induce a saving of fossil energy inputs in the sys- considered to be the “algae superfoods” with advan- tem thanks to the reduction of nitrogen-based ferti- tageous amino acid profiles compared to typical plant lizers, corresponding to 277 kg ha−1 of CO₂ per year.6 proteins such as those from legumes. Technologically, Legumes/pulses could also be competitive crops and, there is still a clear need for development of process- due to their environmental and socioeconomic ben- ing methodologies for an economically viable extrac- efits, could be introduced in modern cropping sys- tion of the high-quality algae proteins. tems to increase crop diversity and reduce the use of external inputs. They also perform well in conserva- For insect protein production an environmental tion systems, intercropping systems, which are very impact assessment based on industrial production important in developing countries as well as in low-in- approaches has not yet been carried out. In the mean- put and low-yield farming systems. Legumes fix the time, companies have reached industrial production atmospheric nitrogen, release high-quality organic 7C harles, R., et al. (2008). Which grain legumes for cropping in Switzer- land; July 2008; Agrarforschung 40(1), 17 – 23. 6 S tagnari, F., Maggio, A., Galieni, A., et al. (2017). Multiple benefits of 8M udryj, A.N., Yu, N., Aukema, H.M. (2014). Nutritional and health legumes for agriculture sustainability: an overview; Chem. Biol. Technol. benefits of pulses. Appl Physiol Nutr Metab 39(11), 1197 – 204. Agric. 4, 2. https://doi.org/10.1186/s40538-016-0085-1 doi: 10.1139/apnm-2013-0557 Epub 2014 Jun 13. PMID: 25061763. VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 7
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context standards, based on which relevant life cycle assess- its food imports per capita are among the highest in ments can be made. The first of these come to the the world, due to in large part to its rather high popu- conclusion that insect proteins are competitive for lation density and the relatively small area available for the production of animal feed. Further increases in cultivation.12 In fact, the food and beverage imports efficiency are foreseeable in the future, provided that with a value of 10784 million CHF in 2019 were 19 % previously unused biomass waste streams are used. higher than the exports. In the 2020 pandemic year, The life cycle analyzes (LCA) carried out also provide this difference increased to remarkable 28 %.13 information on improved environmental compatibil- ity when organic waste is transformed into insect bio- Accordingly, due to coupled self-supply, public health, mass compared to treatments using composting and environmental sustainability and economic reasons, anaerobic degradation. there is strong motivation for the Swiss Food Sys- tem to increase its plant-based food production and 3. A Swiss national perspective reduce farmed animal production. To make things The Swiss food system and the related Swiss food move, a concerted development action of the Swiss industry have implemented the UN SDGs in their Food System players is required. Switzerland has the objectives on a broad application level. Since the SDGs resources and skills to make this happen. were published in 2015, Switzerland has made visible progress in most of the areas addressed by the SDGs.9 3.1. Switzerland as innovation pilot plant To what extent the effects of the COVID-19 pandemic Switzerland is predestined to be developed into a will result in restrictions or weight shifts with regard “Food, Nutrition & Health Innovation Pilot Plant” to the SDGs, remains to be seen. On the other hand, which, from a scientific and technological perspec- new priorities could be derived from this, e.g., in con- tive, allows innovative solutions to regional and global nection with SDGs 3 (health and well-being) and 12 issues in the areas of food, nutrition and health to be (responsible consumption and production) in such developed, tested and implemented. Coordinated a way that nutrition-based disease prophylaxis, e.g., cooperation between industrial and university-based with additional emphasis on immunologically rele- research and development centers throughout Swit- vant aspects, is given more importance, and relevant zerland is therefore envisaged. Special additional ben- business cases are derived. Corresponding skills are efit through innovation is to be achieved through the available in Swiss industry and should be increasingly targeted development interaction between high-tech activated. areas (e.g. IoT/digitization, robotics, additive manu- facturing, in-line sensors and process optimization, According to the Federal Agriculture Office, Switzer- artificial intelligence and biotechnology) with new land’s gross self-sufficiency rate in 2018 was 58 %.10 and established food technology process and prod- The degree of self-sufficiency is defined as the ratio of uct solutions. The entire food system from sustainable domestic production to total domestic consumption. agricultural production to disease prevention through With imported animal feed taken into account, the sustainably processed, personalized, healthy nutrition net level of self-sufficiency was 51 % that year. A closer is imperative for consideration in order to establish a look addressed at the data reveals major differences holistic approach required for gaining comprehensive across products. The country has been able to pro- system knowledge. duce almost 100 % of its animal foodstuffs for years, yet has managed only about 40 % self-sufficiency in plant- Before entering into a concretized recommendation based food.11 Self-sufficiency in animal products is for a “Swiss Food System Future” (SFSF) development also relative. When imported feed is factored into the approach addressing the plant protein space prom- calculation, the rate drops below 80 %. The degree of inently, the specific qualification of Switzerland as self-sufficiency merely indicates a theoretical relation- Research, Development and Implementation (RDI) ship between domestic production and total domestic platform shall now be emphasized. consumption – it does not reflect reality. The reality is that Switzerland imports more than it exports. In fact, 3.1.1. Switzerland's RDI potential Switzerland's specific RDI qualification in the Food 9U N-Sustainable Development Knowledge Platform: Sustainable System is based on seven pillars (A-G) briefly described development in Switzer-land and the 2030 Agenda. https://sustaina- bledevelopment.un.org/memberstates/switzerland in the following: 10 R ossi, Alessandro (2020). BLW Agrarbericht 2020. https://www.agrar- bericht.ch/de/markt/marktentwicklungen/selbstversorgungsgrad?_sm_ 12 S WI-Swiss Info CH, see fn. 10. au_=iVV3D4RWLqqkP6ZD 13 / Pfammatter, M. (2021). Statistische Informationen, EZV (28.1.2021); 11 R ossi, A., Ibid., and SWI-Swiss Info CH. Does Switzerland produce half Swiss Federal Department of Finance FDF; Federal Customs Admini of all the food it needs? https://www.swissinfo.ch/eng/fact-check_does- stration FCA; Press release. Date: 28 January 2021; https://www.ezv. switzerland-produce-half-of-all-the-food-it-needs-/44380058 admin.ch/ezv/en/home/topics/swiss-foreign-trade-statistics.html 8 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context A. Education and Training system duction to the production of functional foods (e.g., In the Global Competitiveness Report of the World Syngenta, Bühler, Nestlé, Givaudan, DSM AG). Com- Economic Forum (WEF), the Swiss education system plemented by the retailers Migros and Coop, which has been ranked first in a world-wide comparison for focus on Switzerland, as well as large processors in years. In a number of world university rankings ETH agriculture and the dairy products sector (e.g. Fenaco, and EPFL are among the top universities (after few Emmi, Hochdorf Swiss Nutrition) and a large number from USA and UK). – In addition, Switzerland has a of SMEs, a closed, high-performance industrial food particularly efficient dual training system that offers system component is unique in Switzerland. the opportunity to enter a vocational training system at the secondary level, which is much more balanced E. Swiss food consumer than in other industrialized nations, if such training The Swiss food consumer is the world leader (after exists at all, and produces highly qualified technicians Bermuda) in terms of per capita spending on living and engineers. and grocery shopping (grocery index: 122.56, mid 2016); both in Retail as well as in the restaurant/gas- B. Innovation profile tronomy area.17 Switzerland has been number 1 in the World Innova- tion Index for seven years in a row (score 67.7 in 2017) F. Politics and society according to the Global Innovation Index. In terms of The Swiss economy is one of the most liberal and the annual (here 2016) number of patent applications most competitive in the world. Low capital costs, a per inhabitant, Switzerland ranks third globally after stable currency, strong purchasing power, moderate Japan and Korea. Switzerland also ranks first in terms taxation, a federal structure and political stability of “high-tech and medium-high-tech output” world- guarantee a high level of security for investments in wide.14 Switzerland. Switzerland is also a very safe country and offers an extremely high quality of life. In impor- C. R&D funding tant areas such as income, health care, climate and With the Swiss National Science Foundation (SNSF) geography as well as political stability, security, per- and Innosuisse, the Swiss funding system has efficient sonal freedom as well as family and community life, and coordinated funding bodies for fundamentals Switzerland achieves top marks both in cities and in (SNSF) and application research (Innosuisse) with a rural regions. For years, the Swiss cities of Zurich, Bern total annual budget of about 1.25 billion CHF (2019).15 and Geneva have been among the top 10 worldwide In addition, the Swiss universities receive approx. 4.9 in the city rankings compiled by the global consulting billion CHF from the federal government and cantons company Mercer.18 as budget funds. The private sector based in Swit- zerland invests around 15.5 billion CHF in R&D per G. Organisational structure in year (approximate numbers from 2019).16 In January the Swiss Food System 2021, Innosuisse announced a “Flagship Program” Based on a number of coupled initiatives to create a which may well suit for the installation of a “Swiss strategic agenda for the Swiss Food System (e.g. via Food System Future” (SFSF) Research, Development the “Food Technology” topic platform of the Swiss and Implementation (RDI) program with a 2030 per- Academy of Technical Sciences, SATW), targeted spective. The same holds for a possibly soon to be building blocks have emerged in this regard. These launched National Research Program (NRP) concern- relate in particular to (1) the Swiss Food and Nutrition ing the Food System from SNSF. Valley (SFNV), (2) the ETH/EPFL “Future Food” initia- tive and (3) the Swiss Food Research (SFR) Innovation D. Swiss industrial landscape in the food sector Booster, which is supported by Innosuisse. Further Switzerland is a main location of major global players integration of these and additional industrial com- along the food value chain from primary food pro- pany members across the Swiss Food System joining can form a powerful base for targeted RDI programs 14 C ornell University, INSEAD, and WIPO (2017): The Global Innovation (e.g. NRP, Flagship) supported by the Swiss funding Index 2017: Innovation Feeding the World, Ithaca, Fontainebleau, bodies addressed under C. and Geneva; ISSN 2263-3693; ISBN 979-10-95870-04-3; Printed and bound in Geneva, Switzerland, by the World Intellectual Property Organization (WIPO), and in New Delhi, India, by the Confederation of Indian Industry (CII). 15 https://www.swisscore.org/swiss-knowledge/research and https://www.innosuisse.ch/inno/en/home/about-us/newsroom/foer- dergeschaeft-2019.html 17 https://www.numbeo.com/cost-of-living/rankings_by_country.jsp 16 https://www.bfs.admin.ch/bfs/en/home/statistics/education-science/ 18 https://www.s-ge.com/en/article/news/zurich-geneva-and-basel- surveys/fe-priv.assetdetail.14776473.html among-top-10-cities-highest-quality-living-worldwide VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 9
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context 3.2. R ecommended Swiss healthy and worldwide basis. Growing more and specific plant sustainable food system approach protein in Switzerland is what a new longer-term CHFood2030 with plant protein focus CHFood-PP2030 national RDI food system scenario “Swiss Plant Protein Food (CHFood-PP)” is classified should aim for. as a possible concrete main RDI subject area for a national CHFood2030 program of the ETH domain, Within the framework of a European project called universities, applied universities, research stations, GL-Pro (European extension network for the devel- industry and consumer associations. opment of grain legume production in the EU), from 2003 – 2005 the Swiss FiBL (Research Institute Entering this area with (i) the primary production of of Organic Agriculture, Lausanne) was part of a crop protein-rich agricultural plants providing good yields demonstration network for grain legumes set up for in Switzerland, including the Alpine region and which evaluating the potential of these crops to enhance can be advantageously integrated in crop rotation their development. In Switzerland, crops grown by with benefits for environmental sustainability (e.g. farmers were observed to evaluate their specificities, legumes), followed by (ii) sustainable up-stream pro- assets and weaknesses. These results were compared cessing to obtain functional protein and micronutri- with European network ones. Accordingly, field pea ent-rich dietary fiber fractions, (iii) processing of nutri- shows highest and most stable yields. Spring faba tious, high sensory quality food products as well as bean and white lupin are interesting alternatives. Pea biocompatible packaging materials using side stream is the best-adapted wintering grain legume. The culti- fractions from (ii) by means of sustainable processes, vation of winter faba bean is also possible.19 up to (iv) the creation of new product lines for sensory and nutritionally customized/personalized consumer Within a joint study of FiBL and ETH Zürich in 2014 convenience products including (v) quantification of positive interactions between species, growing mix- the health support impact spectrum, taking, e.g., into tures of cover crops demonstrated improving the eco- account microbiome, gut-brain axis and epigenetic system services provided by cover crop cultivation. influence potential, would complete the backbone The characterization and the quantification of species building blocks for an innovative food system devel- interactions allowed identifying the key mechanisms opment program approach to be addressed. affecting mixture performance. Without N fertiliza- tion, complementary resource use had a major role Using the before-mentioned (section 3.1.1.) advan- in mixture biomass production. The highest perfor- tageous Suisse ecosystem potential, significant syn- mance was observed in the mixtures containing pea.20 ergistic innovation support can be expected to be – Accordingly, field pea grown sole or in mixture with achieved through coupling the described food sys- other crops may be prioritized. tem backbone building blocks (i)-(v) with potentially interaction-relevant, innovative industrial technology (ii) Upstream-processing of protein containing plant areas established in Switzerland. Such are (a) Robotics material. Dry up-stream processing of pulses includ- & Additive Manufacturing, (b) Industry 4.0 / digitiza- ing peas connects a series of steps being: (i) cleaning, tion, (c) Sustainable Circular Economy, (d) Artificial (ii) grading, (iii) dehulling, (iv) (optical) sorting, (v) fine Intelligence and (e) Cybersecurity. grinding and (vi) air classification. As typical products resulting from this treatment there are protein rich Since these areas are industrially and academically flours. With Bühler AG, there is a prominent indus- represented by operational thematic platforms of the trial global player of Swiss origin who is highly skilled Swiss Academy of Technical Sciences (SATW), there is great chance to use these to facilitate efficient imple- 19 C harles, R., et al., see fn. 6. mentation of related Swiss industry into a suggested 20 Büchi, L., Gebhard, C., Liebisch, F., Sinaj, S., Ramseier, H., Charles, CHFood-PP2030 development program to be estab- R. (2015). Accumulation of biologically fixed nitrogen by legumes lished. cultivated as cover crops in Switzerland. Plant Soil 393:163–175; DOI 10.1007/s11104-015-2476-7 – Wendling, M., Büchi, L., Amossé, C., Jeangros, B., Walter, A., Charles, R. (2017); Specific interactions leading 3.2.1. Existing Swiss building blocks to transgressive overyielding in cover crop mixtures. Agriculture, We now turn to describe the five building blocks Ecosystems and Environment 241, 88–99. – Watson, C.A., Reckling, M., Preissel, S., Bachinger, J., Bergkvist, G., Kuhlman, T., Lindstrom, K., mentioned above in more detail. Nemecek, T., Topp, C., Vanhatalo, A., Zander, P., Murphy-Bokern, D., Stoddard, F. (2017). Grain Legume Production and Use in European (i) Primary production of plant protein sources. Grain Agricultural. Systems Advances in Agronomy, 144, 235 – 303. DOI: 10.1016/bs.agron.2017.03.003 – Ferjani, A., Mann, S., Zimmermann, legumes are currently underrepresented in Euro- A. (2018). An evaluation of Swiss agriculture’s contribution to food pean agriculture and produced on only 1.5 % of the security with decision support system for food security strategy; British arable land in Europe compared with 14.5 % on a Food Journal; ISSN: 0007 – 070X; Publication date: 3 September 2018. 10 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context Figure 1. Pilot Plant setup for High Moisture Extrusion Cooking of plant protein-based meat analogues at ETH Zürich / Food process Engineering Laboratory (FPE/IFNH/D-HEST) in development and optimization of the before-men- where.24 ETH (FPE-Lab) has developed hyperbaric tioned processing steps and with related industrial steam extraction technology with expected potential production scale equipment manufacturing capa- for increasing wet fractionation efficiency at reduced bilities.21 Dry fractionation by air classification is so water and energy consumption, thus improving pro- far limited to about 60 %wt. protein content in the cessing sustainability of the so far in this respect not protein enriched (fine) powder fraction.22 This is so fully satisfying wet fractionation technology.25 far not sufficient for specific applications, most prom- inently represented by extruded plant protein-based For large industrial scale wet fractionation of pulse meat analogues, which require higher protein con- proteins, one might evaluate to what extent the highly centration for the desirable fibrillar meat-like product subsidized Swiss sugar industry could be re-oriented. structure generation. However, there is potential for If pulse (field pea, faba bean) cultivation in Switzer- dry fractionation improvement which could be tack- land would increase, a stepwise replacement of sugar led e.g. by ETH and Bühler. beet cultivation could be synchronized with a factory transformation from sugar to protein extraction. Even For higher protein concentration (ca. ≥ 90 %) two- though the extraction technology for sugar and pulse step wet fractionation processing is typically applied: protein are not identical, there are similarities con- In order to prepare protein concentrates/isolates cerning energy/steam supply, centrifugation process- from pulse seeds or oilseed cake, the most widely ing and material logistics.26 used process is the two-steps process patented in 1955 by Anson and Pader.23 After an alkaline solubili- (iii) Processing of plant protein-based food products. zation of the proteins, the insoluble material (starch, Most prominent candidates of plant protein-based fibers) is removed by centrifugation. Adding hydro- food products are meat analogues processed by High chloric acid to the supernatant, the protein is pre- Moisture Extrusion Cooking (HMEC) with authentic cipitated iso-electrically (pH 4.0–5.0), separated by meat-like fibrillar structure.27 Such analogues demon- centrifugation and neutralized. The co-product con- strated a rapid market growth in the past two years tains the other soluble components, mainly sugars, soluble fibers, fat and ashes. Other versions of 2-steps 24 P lant protein extraction: state of the art; http://www.improve-innov. com/plant-protein-extraction-state-of-the-art/ processes (Extraction/ Isolation) are described else- 25 F riedman, T., Lustenberger, C., Windhab, E.J. (2004). Filtration experi- ments with compressible filter cakes in centrifugal fields with super- 21 / Bühler AG (undated). Peas-processing - the protein of the future. imposed static pressure; https://www.sciencedirect.com/journal/inter- https://www.buhlergroup.com/content/buhlergroup/global/en/indus- national-journal-of-mineral-processing/vol/73/issue/2 Pages 261 – 267. tries/Pulses/dry-peas.html 26 BMA: https://www.bma-worldwide.com/extraction-plants-for-sugar- 22 S chutyser, M.A.I.,van der Goot, A.J. (2011). The potential of dry beet-factories.html and: Soy protein isolate processing: fractionation processes for sustainable plant protein production. http://www.fao.org/3/t0532e/t0532e07.htm Trends in Food Science & Technology 22, 154e164. 27 Osen, R., Toelstede, S., Eisner, P., Schweiggert-Weisz, U. (2015). Effect Doi:10.1016/j.tifs.2010.11.006 of high moisture extrusion cooking on protein–protein interactions 23 A nson, M.L., Pader, M. (1957). Extraction of soy protein; US-Patent of pea (Pisum sativum L.) protein isolates. International Journal of 2,785,155. Food Science and Technology 50, 1390–1396. VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021 11
Table of contents Erich J. Windhab | Plant based premium food innovation horizon for the Swiss Food System in a Global Context ucts have entered the market in sliced and marinated formats. The upcoming next product generation with adjusted tenderness will probably also take meat-like “grown” steak/schnitzel pieces into account. In addi- tion, extended processing concepts are on the way to be implemented which promise the setting of juic- iness. This will be the base for near-future concepts addressing sensory and nutritional customization/ personalization. (vi) Consumers' preferences, acceptance and nutritional needs (PAN). The processing concepts under develop- Figure 2. HMEC-AEREX extrusion of novel micro-foamed plant protein-based ment introduced in (v) have good chance to enable meat analogue structure with adjusted “tenderness” and “fibrousness” meeting specific preferences, acceptance and nutri- (Bühler / ETH-FPE patent application) tional needs of consumer target groups (e.g., elderly, pregnant women, gluten intolerant) and also fulfil and are consequently in the focus of an increasing further sensory quality expectations of the growing number of food producers, from Swiss global players flexitarian population group. In this respect there is like Nestlé to Swiss startups. One of the most success- also advanced consumer science related knowledge ful Swiss startups in this product segment is Planted available based on consumer surveys by the ETH con- Foods AG,28 a 2019 founded spin-off from the ETH sumer behavior lab.30 Food Process Engineering Laboratory which already delivers its products in Switzerland successfully via (vii) Derived health and sustainability benefits. Pulses the retailers Coop and Migros. For such meat ana- are a low fat source of protein with high levels of pro- logues, ETH, in collaboration with the Swiss com- tein and fiber. Pulses also contain important vitamins pany Bühler has succeeded in developing, scaling and minerals like iron, potassium and folate. There is and implementing a novel process which, through extensive knowledge in Swiss research groups con- micro-foaming, allows for the meat analogues to cerning plant protein and fiber analysis (e.g. ETH adjust their “degree of tenderness” from chicken to Zürich, Food Biochemistry, Food Biotechnology and beef types without losing the fibrillar structure.29 Fur- Food and Soft Materials labs). ther Swiss company partners involved in a related EU: EIT Food project have thus been able to work out a 4. Conclusions technological lead position, which is to be used as a A food systems approach is a way of thinking and key strategic component for the CHFood-PP2030 RDI acting that considers the food system in its totality. It program suggested. Figure 1 demonstrates a Bühler is not confined to one single sector, sub-system (e.g., BCTL extruder in the ETH-FPE pilot plant and Figure value chain, market) or discipline, and thus broad- 2 shows novel, patented “tenderness-tailored” meat ens the framing and analysis of a particular issue as analogues from pea protein and pea fiber mixtures. the result of a web of interlinked activities and feed- backs. In the context of global food system challenges Besides the before-addressed meat analogues, there including the estimated post-Covid situation, bound- is ongoing R&D work on other pea protein-based ary conditions and building blocks for the creation of food product systems in the plant-milk and cheese a strategic agenda of the Swiss Food System have been domains. introduced. From this a preferred concept has been derived for the generation of a “Swiss Plant Protein (iv) Storage, distribution and retail. So far HMEC pro- Food” (CHFood-PP2030) Research, Development and cessed meat analogue products are vacuum-pack- Implementation domain, suggested as a first main aged and cold stored. However, there are most rele- thematic building block of a national CHFood2030 vant sustainability-optimized concepts for ambient program involving the ETH domain, universities, uni- storage under development. versities of applied sciences, research stations, indus- try and consumer associations, and for which support (v) Kitchen processing and meal preparation. Presently by SNF (NRP) and Innosuisse (Flagship) should be most of the HMEC processed meat analogue prod- taken into account. n 28 Planted Foods AG; https://en.eatplanted.com 30 M ichel, F., Hartmann, C. Siegrist, M. (2021). Consumers’ associations, 29 E. J. Windhab, E. Stirnemann, B. Mitra, M. Weinberger (2020). perceptions and acceptance of meat and plant-based meat alternati- Bühler/ETH Patent Application PCT/EP2020/073444. ves. Food Quality and Preference 87, 104063. 12 VSH-Bulletin Nr. 1, April 2021 | AEU-Bulletin no 1, avril 2021
Sie können auch lesen