Klima und Gesundheit - Land Kärnten

Die Seite wird erstellt Fiete Decker
 
WEITER LESEN
Klima und Gesundheit - Land Kärnten
Klima und Gesundheit

                       1
Klima und Gesundheit - Land Kärnten
Klima und Gesundheit

                           5
    Gesundheit
                               3
    Klima &
    –

2                                  3
Klima und Gesundheit - Land Kärnten
Klima und Gesundheit   Inhaltsverzeichnis

                           1. EINLEITUNG                                               8

                           2. METEOROLOGISCHE UND KLIMATOLOGISCHE GRUNDLAGEN           10
                           2.1 Wetter – Witterung – Klima                              12
                           Gefühlte Temperatur und PET                                 13
                           2.2 Das Klimasystem                                         13
                           2.3 Externe Klimatreiber                                    15
                           2.4 Klimafaktoren                                           16
    verzeichnis
                           2.5 Klimavariabilität – Klimaschwankung – Klimawandel       16
                           2.6 Externer Antrieb, interne Klimaschwankungen/
                           Wechselwirkungen und Rückkoppelungen                        16
                           2.7 Klimaelemente                                           17
                           Klimamodellierung global und regional                       20

                           3. NATÜRLICHER UND MENSCHENGEMACHTER TREIBHAUSEFFEKT        22
                           3.1 Was sind die konkreten Auswirkungen des Klimawandels?   24
    Inhalts-

                           3.2 Klimawandel: Die spezielle Sicht auf Kärnten            28
                           3.2.1 Das thermische Befinden des Menschen                  29
                           3.2.2 Zukünftige Trends                                     29
                           Klimaskeptiker/innen und ihre Argumente                     34
                           Juhu – endlich Sommer! Klimawandel aus Sicht der Medien     36
                           Klimawandel in Kärnten                                      38

                           4. GESUNDHEITSFOLGEN VON EXTREMWETTEREREIGNISSEN            40
                           4.1 Unmittelbare Gesundheitsfolgen                          41
                           4.2 Psychische und soziale Folgen                           42
                           4.2.1 Posttraumatische Belastungen                          42
                           4.2.2 Migration                                             43
                           4.3 Schlussfolgerungen                                      44
    –

4
Klima und Gesundheit - Land Kärnten
Klima und Gesundheit                                      Inhaltsverzeichnis

5. GESUNDHEITLICHE FOLGEN VON HITZEWELLEN            46   8. KLIMASCHUTZ UND ANPASSUNG AN DEN KLIMAWANDEL                               74
5.1 Temperatur und Gesundheit                        47   8.1 Klimaschutz                                                               76
5.2 Jahreszeitliche Temperaturschwankungen           49   8.1.1 Wer verursacht Treibhausgasemissionen?                                  76
5.3 Hitzewellen                                      52   Grundlegende Berechnungen                                                     78
Hitzeschutzplan der Steiermark                       54   8.1.2 Klimaschutzstrategie international und national                         80
                                                          8.1.3 Die Entwicklung der Treibhausgasemissionen in Österreich und Kärnten    81
                                                          8.1.4 Die Kärntner Klimastrategie                                             84
6. KLIMAWANDEL UND INFEKTIONSERKRANKUNGEN            58
                                                          Herausforderung Klimapolitik                                                  85
6.1 Zecken                                           60
                                                          Die Villach-Konferenz im Oktober 1985                                         85
6.2 Stechmücken                                      62
                                                          8.2 Anpassung an den Klimawandel                                              86
6.3 Malaria in Mitteleuropa                          63
                                                          Klimawandelanpassung: Grün in der Stadt                                       89
6.4 Sandmücken                                       64
                                                          Ausblick in die Zukunft                                                       90
6.5 Infektionskrankheiten von Tieren                 65
6.6 Ausblick                                         66
                                                          9. TIPPS: WAS JEDE/R EINZELNE TUN KANN                                        92
                                                          9.1 Klimaschutz                                                               93
7. KLIMAWANDEL UND LUFTVERUNREINIGUNGEN              68
                                                          9.2 Adaptation an den Klimawandel                                             95
7.1 Trends und Quellen von Luftschadstoffen          69
7.2 Wetter und Luftschadstoffe                       70
7.3 Luftschadstoffe und Klimawandel                  71   10. WEITERFÜHRENDE INFORMATIONEN UND NÜTZLICHE LINKS                          98

7.4 Andere Luftverunreinigungen                      71
Ragweed (Ambrosia artemisiifolia) breitet sich aus   72   11. VERWENDETE UND WEITERFÜHRENDE LITERATUR                                  102
Zusammensetzung der Luft in Bodennähe (staubfrei)    73
Klima und Gesundheit - Land Kärnten
Klima und Gesundheit                2. Einleitung

                                        1. EINLEITUNG

               1                        Die Bedeutung von Klima und Klimawandel in unserer Gesellschaft

                                        „Klima“ beschreibt die durchschnittlichen Witterungsverhältnisse über eine länge-
                                        re Zeit (in der Regel 30 Jahre). Das Klima war nie stabil, sondern änderte sich seit
                                        erdgeschichtlichen Zeiten durch verschiedenste Faktoren.
                                        Das lokale Klima wird auch schon lange von Menschen beeinflusst. So veränderte
                                        die Abholzung der Wälder zum Heizen und Kochen und für Haus- und Schiffs-
                                        bau durch die antiken Mittelmeerkulturen Vegetation und Klima im gesamten
                                        betroffenen Gebiet. Neu ist allerdings, dass menschliche Aktivität, insbesondere
                                        die massive Produktion von klimawirksamen Treibhausgasen, das Klima global
                                        beeinflusst.
                                        Klimawandel ist im Prinzip weder „gut“ noch „schlecht“. Eine rasche Änderung
                                        – egal in welche Richtung – kann allerdings die natürliche Anpassungskapazität
                                        verschiedener Systeme überfordern. Das können technische Systeme sein (z. B.
                                        für die Energiegewinnung durch Wasserkraft) oder biologische Systeme wie etwa
                                        das Ökosystem „Bergwald“ oder der menschliche Organismus.
                                        Die vorliegende Broschüre erläutert zunächst, was „Klima“ und „Klimawandel“
                                        eigentlich genau sind und geht dabei besonders auf die Kärntner Situation ein. Im
                                        Anschluss werden die vielfältigen (möglichen) Auswirkungen des Klimawandels
                           Einleitung

                                        auf Gesundheit und Wohlbefinden des Menschen dargestellt.
                                        Weiters finden Sie etliche Tipps für den Klimaschutz und die Anpassung an den
                                        Klimawandel. Nicht behandelt wird das Innenraumklima, Information dazu finden
                                        Sie in unserer Broschüre „Innenraum und Gesundheit“, die 2010 in dieser Publika-
                                        tionsreihe erschienen ist (http://www.ktn.gv.at/197092_DE).
                           –

8                                                                                                                              9
Klima und Gesundheit                         2. Meterologische und klimatologische Grundlagen

                                                  2. METEOROLOGISCHE UND

                2                                 KLIMATOLOGISCHE GRUNDLAGEN

                                                  Das einzig Beständige am Klima ist seine Unbeständigkeit. Verantwortlich dafür
                                                  ist die Erdrotation.
                                                  Das Wort „Klima“ kommt aus dem Altgriechischen und bedeutet „neigen“: Die
                                                  Erde dreht sich um ihre eigene Achse und steht dabei in einem gewissen Nei-
                                                  gungsverhältnis zur Sonne. Daraus resultieren jahreszeitlich unterschiedliche

                            und klimatologische
                                                  Einstrahlungsverhältnisse. Ist auf der Nordhalbkugel Sommer (Nordsommer),
                                                  empfängt sie mehr Sonnenstrahlen als die Südhalbkugel – während des Südsom-
                                                  mers ist es umgekehrt.
                                                  Der Strahlungsunterschied zwischen dem Äquator und den Polen ist enorm groß,
                                                  und natürlich ergeben sich dadurch große Temperaturunterschiede: Am Äquator
                                                  ist es bekanntlich heiß, an den Polen kalt. Das führt zu Druckunterschieden, die –
                            Meterologische
                                                  zusammen mit der Erdrotation und der Schwerkraft – Winde entstehen lassen.
                                                  Das Erdklima ist geografisch in unterschiedliche Klimazonen eingeteilt. Diese
                                                  Einteilung folgt weitgehend den unterschiedlichen Strahlungsbedingungen, die
                                                  wiederum die Entwicklung von Größen wie Lufttemperatur und Niederschlag im
                            Grundlagen
                                                  Jahresverlauf beeinflussen.
                                                  Das Klima ist wie gesagt unbeständig. Und das seit jeher: In der Natur finden sich
                                                  zahlreiche Beweise (so genannte Proxy-Indikatoren) dafür, dass das Erdklima eine
                                                  spannende, wandelhafte Geschichte durchlaufen hat. Viele fossile Brennstoffe, die
                                                  wir jetzt nutzen und die uns den Klimawandel bescheren, entstanden in warmen
                                                  Klimaperioden oder -regionen. Wenn wir heute Erdgas oder Kohle verbrennen,
                                                  greifen wir zurück auf Ressourcen, die bereits vor etwa 300 Millionen Jahren, im
                                                  Karbon, gebildet wurden: Europa und Amerika lagen damals nahe dem Äquator
                                                  mit seinem schwül-heißen, tropischen Klima. Riesenfarne und Riesenschachtel-
                                                  halme fanden hier ideale Bedingungen vor – und legten den Grundstein für die
                                                  heutigen Erdgas- und Kohlevorräte.
                            –

10                                                                                                                                     11
2. Meterologische und klimatologische Grundlagen                                  2. Meterologische und klimatologische Grundlagen

     — 2.1 Wetter – Witterung – Klima                                                  Gefühlte Temperatur und PET

     Das Klima und der Klimawandel sind komplexe Phänomene. Um die Zusammen-           In der Meteorologie wird die Lufttemperatur entsprechend vorgegebenen internati-
     hänge gut zu verstehen, ist es hilfreich, die gängigsten Begriffe zu kennen. Ob   onalen Richtlinien (strahlungsgeschützt, ventiliert) gemessen. Der Mensch ist aber
     man von „Wetter“, „Witterung“ oder „Klima“ spricht, hängt von der Zeitspanne      einer Kombination von meteorologischen Elementen ausgesetzt: Lufttemperatur,
     ab, um die es geht.                                                               Strahlungsbedingungen, Windgeschwindigkeit und Luftfeuchtigkeit. All diese
                                                                                       Größen beeinflussen die thermische Wahrnehmung: So verursacht eisig kalter
     Von „Wetter“ ist die Rede,                                                        Wind bekanntlich ein Frösteln, während hohe Luftfeuchte sowie direkte Sonnen-
     • wenn man sich darauf beschränkt, jene Prozesse und Zustände zu beobachten,      strahlung den Menschen schwitzen lassen. Die körperliche Aktivität bestimmt
         die sich vor allem in den unteren zehn Kilometern der Atmosphäre rasch        das thermische Empfinden in hohem Ausmaß, ebenso wie Gewicht, Körpergröße,
         ändern, und                                                                   Geschlecht und Alter.
     • wenn man diese Prozesse auf einen bestimmten Zeitpunkt bezieht.                 PET (physiologisch äquivalente Temperatur) und PT (gefühlte Temperatur, percei-
     Als Prozesse und Zustände der Atmosphäre gelten alle meteorologischen Größen      ved temperature) berücksichtigen sowohl die meteorologischen Einflussfaktoren
     (auch „Klimaelemente“). Dazu gehören unter anderem Sonnenstrahlung, Luft-         als auch die thermophysiologischen, wobei den Berechnungen ein „Modell-
     druck, Lufttemperatur, Luftfeuchtigkeit, Bewölkung, Niederschlag und Wind.        mensch“ mit bestimmten definierten Eigenschaften zu Grunde liegt. PET und PT
     Eingeschlossen sind auch so genannte zusammengesetzte Klimaelemente wie           stellen damit einen sehr anschaulichen Parameter zur Bestimmung der thermischen
     Verdunstung, Trockenheit, gefühlte Temperatur (PT) und physiologisch äquivalen-   Belastung für den Menschen dar. Allerdings darf man nicht außer Acht lassen,
     te Temperatur (PET). Klimazonen werden bestimmt, indem die Klimaelemente den      dass PET und PT nur einen Richtwert liefern, individuelle Faktoren müssen unbe-
     einzelnen Orten zugerechnet werden.                                               rücksichtigt bleiben.

     „Witterung“ ist jenes Phänomen, das sich über einen größeren Zeitraum erstreckt
     als das Wetter, beispielsweise über einen ganzen Tag, eine Woche oder eine Jah-   — 2.2 Das Klimasystem
     reszeit. Großräumige Wetterlagen bestimmen Wetter und Witterung.
                                                                                       Die Atmosphäre ist die Lufthülle unserer Erde, in der sich das Wettergeschehen
     Das „Klima“ ist die zeitliche Zusammenfassung von Wetterzuständen und Pro-        abspielt. Sie ist nicht isoliert, sondern steht in Wechselwirkung mit den anderen
     zessen. Die Meteorologische Weltorganisation (WMO) definiert Klima folgender-     Komponenten des Erdsystems: mit Wasser und Eis, mit Leben und der festen Erde.
     maßen: „Das Klima ist die Synthese des Wetters über einen Zeitraum, der lange     Es hat sich daher der Begriff Klimasystem eingebürgert. Im Klimasystem, das die
     genug ist, um dessen statistische Eigenschaften bestimmen zu können.“ Klassi-     Atmosphäre, Hydrosphäre, Kryosphäre, Geosphäre und Biosphäre umfasst, laufen
     scherweise wird dabei ein Zeitraum von 30 Jahren gewählt.                         komplexe Prozesse ab, die untereinander verwoben sind und interagieren (siehe
                                                                                       Abbildung 1).
     Einige grundlegende statistische Eigenschaften sind Mittelwert, Streuung, Ext-    Wind und große Wasseroberflächen sind unmittelbar aneinander gekoppelt. Wind
     rema und die Häufigkeitsverteilung von meteorologischen Größen. Vor allem die     regt die Oberflächenströmungen der Ozeane an; ein prominentes Beispiel ist der
     Extrema, also die extremen Wetterereignisse, haben beim menschenverursachten      Golfstrom, der das bemerkenswerte milde Klima an den Küsten Nordeuropas
     (anthropogenen) Klimawandel den größten Einfluss auf die Gesellschaft: Ob eine    bedingt. Die Wetterereignisse „El Niño“ und „La Ninja“ haben ihren Ursprung im
     Hitzewelle wie im Jahr 2003 in Zukunft häufiger auftreten wird, ist von elemen-   tropischen Pazifik, wirken aber auf das globale Klima. Viele wichtige Klimapro-
     tarer Bedeutung für jede/n Einzelne/n und für die gesamte betroffene Volkswirt-   zesse finden in den Ozeanen statt. Dazu gehört beispielsweise die Tiefenwasserbil-
     schaft.                                                                           dung im Atlantik rund um Grönland, die den Motor für die so genannte thermoha-

12                                                                                                                                                                          13
2. Meterologische und klimatologische Grundlagen                                                         2. Meterologische und klimatologische Grundlagen

     line Zirkulation darstellt.                                                                              — 2.3 Externe Klimatreiber
     Die Prozesse, die sich in und zwischen Atmosphäre, Hydrosphäre, Biosphäre,
     Pedosphäre (Böden) und Lithosphäre abspielen, sind also tief vernetzt. Daher                             Externe Klimatreiber wirken von „außen“ auf das Klimasystem. Sie beeinflussen
     muss auch das Klimasystem gesamtheitlich betrachtet werden – besonders, wenn                             das Klima, werden selbst aber nicht vom Klima beeinflusst. Die Sonne ist einer
     man sich auf längere Zeitskalen konzentriert, die Klimaschwankungen und den                              dieser externen Klimatreiber. Ihre Aktivität wuchs über Jahrmilliarden auf ihren
     Klimawandel abbilden.                                                                                    jetzigen Stand. Auch die Drift der Kontinente beeinflusste und beeinflusst das
                                                                                                              Klima. Die Erde war mit großer Wahrscheinlichkeit über etwa 90 Prozent ihrer
                                                                                                              4,6 Milliarden Jahre langen Geschichte weitgehend eisfrei. Dass der Südpol heute
                                                                                                              vereist ist, stellt also eher die Ausnahme dar als die Regel. Ähnlich ist es mit der
                                                                                                              Zusammensetzung der Atmosphäre: Der Kohlendioxidgehalt der Luft entsprach
           Klimafaktoren                           Klimasystem                            Änderungen im
                                                                                                              vor etwa 500 Millionen Jahren dem 20-Fachen von heute. Der Sauerstoffgehalt
       Externer Klimaantrieb                Interne Wechselwirkungen                       Klimasystem
      durch Randbedingungen                                                                                   stieg im Zeitraum von etwa 600 bis 300 Millionen Jahren von etwa drei Prozent
                                                                                                              auf heute über 20 Prozent. Das Kohlendioxid in der Atmosphäre wurde also weni-
                                                                                                              ger, der Sauerstoffgehalt stieg. Zu verdanken haben wir das den Pflanzen.
                                                          1
      Änderungen von
                                                                                                              Was die Temperatur betrifft, so gibt es etwa alle 100.000 Jahre eine Kaltzeit.
       atmosph. Zusammensetzung                                                        Atmosphäre
                                                                                                              Verantwortlich dafür sind
                                                                                                          1
                                        5                                 2
       Sonnenaktivität                                                                 Biosphäre          2

       Erdbahnparametern                                                               Hydrosphäre        3
                                                                                                              •   eine veränderte Neigung der Erdachse zur Umlaufbahnebene um die Sonne
                                                                                                                  (21° 55´ bis 24° 18´) sowie
       vulkanischer Aktivität                                                          Geosphäre          4
                                                                                                              •   eine Abweichung von der Umlaufbahn und der Kreiselbewegung der Erdachse.
                                               4                    3
       Plattentektonik                                                                 Kryosphäre         5
                                                                                                              Die letzte Eiszeit endete vor ca. 30.000 Jahren, wir befinden uns derzeit in einer
                                        1    Atmosphäre / Troposphäre / Stratosphäre                          Zwischeneiszeit, einem so genannten Interglazial.
                                                                                                              Betrachtet man das Klima der vergangenen Jahrzehnte und Jahrhunderte, bemerkt
                                        2    Biosphäre: lebende Biota, tote Biomasse
                                                                                                              man den Zusammenhang zwischen Klimaveränderungen und äußeren Klima-
                                        3    Hydrosphäre: Süßwasser, Ozeane                                   treibern. Zu diesen äußeren Treibern gehören beispielsweise Vulkanausbrüche,
                                        4    Geosphäre: (feste Erde), Boden, Gesteine
                                                                                                              menschengemachte Treibhausgas- und Partikelemissionen (Aerosole) und eine
                                                                                                              kurzfristig veränderte Sonnenaktivität. Auf den Ausbruch des indonesischen Vul-
                                        5    Kryosphäre: Schnee, Meereis, Gletscher, Inlandeis
                                                                                                              kans Tambora im Jahr 1815 folgte 1816 das „Jahr ohne Sommer“ mit Missernten
                                                                                                              in weiten Teilen Europas. Während des Maunder-Minimums der Sonnenaktivität
                                                                                                              1645 bis 1715 sank die globale Mitteltemperatur um 0,5 °C, der Winter 1708/1709
                                                                                                              war der kälteste in Europa der letzten 500 Jahre, und seit 1900 ist die globale Mit-
     Abbildung 1: Externe Klimatreiber, Klimasystem, Klimaänderung
                                                                                                              teltemperatur um etwa 0,8 °C gestiegen.
     (Quelle: NOAA, leicht geändert).

14                                                                                                                                                                                                   15
2. Meterologische und klimatologische Grundlagen                                    2. Meterologische und klimatologische Grundlagen

     — 2.4 Klimafaktoren                                                                 che. Insgesamt ist es schwierig, Ursache und Wirkung genau zu bestimmen.
                                                                                         Seit dem Ende der kleinen Eiszeit Mitte des 19. Jahrhunderts erwärmt sich die
     Klimafaktoren sind die räumlichen Randbedingungen, die das Klima beeinflussen.      Erde ungleichmäßig. Diese Ungleichmäßigkeit entsteht, weil sich interne Klima-
     Expert/inn/en sprechen von der kleinräumigen, der mittleren und der großräumi-      schwankungen und externer Klimaantrieb durch Treibhausgase überlagern.
     gen Skala. So sorgt etwa die Land-Meer-Verteilung oder die Entfernung zu großen     Wechselwirkungen innerhalb des Klimasystems können sich selbst verstärken
     Wasserflächen entweder für ein mehr kontinentales oder mehr ozeanisch gepräg-       (positive Rückkoppelung) oder sich abschwächen (negative Rückkoppelung) und
     tes Klima (großräumig). Auch die Ausrichtung von Gebirgen oder die Höhenlage        damit stabilisierend wirken. Ein Beispiel für eine positive Rückkoppelung ist die
     einer Region beeinflussen das Klima (mittlere Skala), ebenso Hangexposition,        Schnee-Eis-Albedo-Rückkoppelung: Kühlt die Lufttemperatur geringfügig ab,
     Hangneigung oder Eigenschaften des Untergrundes (kleinräumige Skala).               bleibt der Schnee länger liegen. Damit steigt im Vergleich zu einer aperen Land-
                                                                                         oberfläche auch der Energieverlust durch die Reflexion der einfallenden Sonnen-
     Dementsprechend werden drei Klimagrößen unterschieden:                              strahlung an der weißen Schneedecke – das verstärkt die Abkühlung weiter.
     • Makroklima bezeichnet das Klima einer größeren Region von etwa tausend
       bis zehntausend Kilometer (z. B. Kontinent),                                      — 2.7 Klimaelemente
     • Regional- oder Mesoklima bezieht sich auf ein Areal von einem bis etwa
       tausend Kilometer Umkreis, und                                                    Je nach Jahreszeit und Breitengrad trifft die Sonnenstrahlung unterschiedlich stark
     • Mikroklima spielt sich auf einem Areal von einem Kilometer und weniger ab.        auf die Landoberfläche. Das beeinflusst die Temperaturverteilung und die davon
                                                                                         abhängigen Klimaelemente. Zu den Klimaelementen zählen Sonnenscheindau-
     — 2.5 Klimavariabilität – Klimaschwankung – Klimawandel                             er, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Niederschlag und Wind. Es gibt
                                                                                         überdies speziellere Klimaelemente, wie Verdunstung, Boden-/Wassertemperatur
     Als „Klimavariabilität“ bezeichnet man die kleinskaligen Schwingungen von           und so genannte Klima-Indizes, die aus einer Kombination von Klimaelementen
     Jahr zu Jahr um den Normalwert, was auch als „Klimarauschen“ bezeichnet wird.       berechnet werden. Mit Klimaelementen kann man das Klima in jeder räumlichen
     „Klimaschwankungen“ dauern zumindest zehn Jahre und können sowohl von               Größenskala kennzeichnen: beispielsweise vom Mikroklima auf einer Waldlich-
     externen Klimatreibern ausgelöst werden als auch intern entstehen. Wenn diese       tung bis hin zum globalen Klima.
     Klimaänderungen in eine Richtung laufen, spricht man von Klimaänderung oder
     Klimawandel. Die Grenze zwischen Klimaschwankung und Klimawandel ist flie-          Die Sonneneinstrahlung liefert fast die gesamte Energie für die Erde und die At-
     ßend. Der durch Menschen verursachte (anthropogene) Klimawandel wird jeden-         mosphäre. Am Außenrand der Erdatmosphäre beträgt die Bestrahlungsstärke 1,367
     falls von „außen“ angetrieben, und zwar durch die Emission von Treibhausgasen.      kW/m2. Dieser Wert wird Solarkonstante genannt – obwohl er keine Konstante im
                                                                                         eigentlichen Sinn ist. Ein Quadratmeter an der Obergrenze der Atmosphäre emp-
     — 2.6 Externer Antrieb, interne Klimaschwankungen/Wechselwirkungen                  fängt somit etwa so viel an Heizleistung durch die Sonne wie von einem Badezim-
     und Rückkoppelungen                                                                 merstrahler ausgeht.

     Das Klimasystem reagiert auf externe Faktoren in mannigfaltiger Weise. Diese Re-    Der Luftdruck in einer bestimmten Höhe entspricht der Gewichtskraft, die die
     aktionen passieren oft nicht sofort nach dem ursächlichen Ereignis und in einzel-   darüber liegende Luftsäule auf die Einheitsfläche (m²) ausübt. Das heißt: Der
     nen Weltgegenden auch in unterschiedlichem Ausmaß. Das zeigten wissenschaftli-      Luftdruck sinkt mit der Höhe. Am Gipfel des Mount Everest beträgt der Luftdruck
     che Studien, die in den Berichten des Weltklimarats IPCC zusammengefasst sind.      nur noch etwa ein Drittel des Wertes auf Meeresniveau, am Großglockner sind es
     Intern verursachte Klimaschwankungen können extern angeregte Klimaänderun-          zwei Drittel. Dementsprechend sinkt auch der Sauerstoff-Partialdruck (Sauerstoff-
     gen überdecken. Als intern verursacht gelten Wechselwirkungen in oder zwischen      Teildruck). Die physikalische Einheit des Luftdrucks ist Hekto-Pascal (hPa), das
     den verschiedenen Klima-Subsystemen Atmosphäre, Ozean, Eis- und Landoberflä-        entspricht dem Millibar (mb).

16                                                                                                                                                                             17
2. Meterologische und klimatologische Grundlagen                                      2. Meterologische und klimatologische Grundlagen

     Der Wind gleicht unterschiedliche Luftdruckstärken in einem Niveau aus, indem         Als Luftfeuchtigkeit bezeichnet man Wasser, das sich im gasförmigen Zustand
     er vom höheren Druck zum tieferen Druck strömt. Würde sich die Erde nicht dre-        in der Atmosphäre befindet. Wasserdampf ist durchsichtig und lässt die einfal-
     hen, wären Tiefdruckgebiete daher rasch aufgefüllt, durch die Erdrotation wird der    lende Sonnenstrahlung ungehindert durch – er absorbiert jedoch die langwellige
     Wind jedoch abgelenkt. Auf der Nordhalbkugel strömt die Luft spiralförmig gegen       Ausstrahlung der Erdoberfläche, hält die Wärme also zurück und verstärkt dadurch
     den Uhrzeigersinn in die Tiefdruckgebiete ein, es dauert daher einige Tage, bis ein   den Treibhauseffekt. Die wichtigsten Wasserdampfquellen sind die tropischen
     Tiefdruckgebiet von der Wetterkarte verschwindet. Je größer die Luftdruckunter-       Meere. Würde der Gesamtgehalt an Wasserdampf in der Atmosphäre kondensieren
     schiede sind, desto stärker bläst der Wind.                                           und auf einmal ausregnen, entstünde auf der Erdoberfläche eine Wasserschicht von
                                                                                           nur 25 mm Höhe. Der gesamte Wasserdampfvorrat der Atmosphäre muss daher
     Die Lufttemperatur zählt zusammen mit Niederschlag, Luftfeuchtigkeit und              alle zehn bis elf Tage umgewälzt werden, damit sich der mittlere globale Jahres-
     Luftdruck zu den wichtigsten Klimaelementen. Sie ist ein Maß für den Wärmezu-         niederschlag von etwa 800 mm ausgeht.
     stand der Atmosphäre. Die physikalische Einheit ist Kelvin, in der Klimatologie
     wird jedoch meist die Celsius-Skala verwendet. Die Lufttemperatur wird strah-         Es gibt einige Maße für die Luftfeuchtigkeit, als absolutes Maß wird in der Mete-
     lungsgeschützt gemessen, oft wird der Messfühler auch belüftet, um Strahlungs-        orologie häufig der Dampfdruck verwendet. Der Wasserdampf trägt zum Gesamt-
     einflüsse auf den Sensor auszuschalten.                                               luftdruck bei und hat daher die Maßeinheit hPa. In einem Kubikmeter Luft kann
                                                                                           nur eine bestimmte maximale Wasserdampfmenge enthalten sein – und zwar umso
     Die Luft heizt sich von unten her auf und kühlt beim Aufsteigen ab. Die in einem      mehr, je höher die Temperatur ist. Bei Überschreiten dieses Grenzwertes kommt
     Luftpaket als Wärme enthaltene Energie wird zum Aufsteigen verwendet, damit           es zur Kondensation, es bilden sich Wassertröpfchen. Der Sättigungsdampfdruck
     kühlt sich das Luftpaket um etwa 1 °C pro 100 Meter ab. Sobald der im Luftpaket       steigt exponentiell mit der Temperatur an: bei minus 20 °C beträgt der Sättigungs-
     enthaltene Wasserdampf kondensiert und dabei Energie frei wird, verringert sich       dampfdruck 1,2 hPa, bei 0 °C 6 hPa, bei 20 °C 23,4 hPa und bei 30 °C 42,4 hPa.
     die Temperaturabnahme auf etwa 0,6 °C pro 100 Meter. In windschwachen, gering
     bewölkten Nächten kommt es jedoch häufig zur Umkehr dieser Regel: Die Luft ist        Die relative Feuchtigkeit drückt aus, wie groß der aktuelle Wasserdampfgehalt der
     in höheren Luftschichten wärmer als im Tal, es hat sich eine Temperatur-Umkehr        Luft im Verhältnis zum maximal möglichen Sättigungswert bei der herrschenden
     gebildet (Inversion). Das Kärntner Sprichwort „Steigt man höher um einen Stock,       Temperatur ist und wird in Prozent angegeben.
     wird´s wärmer um einen Rock“ beschreibt dieses Phänomen sehr bildhaft. Durch
     den großen Wärmeverlust der bodennahen Luft in der Nacht sammelt sich Kaltluft        Die Niederschlagsbildung ist ein komplexer Prozess. Zur Niederschlagsbildung
     an, der vertikale turbulente Austausch mit der relativ warmen Luft in der Höhe        kommt es bei Hebungsprozessen, die in Tiefdrucksystemen an der Grenze von
     wird unterbunden. Die Atmosphäre ist stabil geschichtet, der Luftaustausch bleibt     unterschiedlich temperierten und dichten Luftmassen (Kaltfronten und Warmfron-
     aus, und so sammeln sich Luftschadstoffe aus Verkehr, Industrie oder Hausbrand        ten) stattfinden, oder wenn kräftige Sonnenstrahlung bodennahe Luftpakete stark
     in der Kaltluft.                                                                      überwärmt. Dadurch wird die Luft wärmer und steigt auf, das Luftpaket kühlt um
                                                                                           1 °C pro 100 Höhenmeter ab. In einer bestimmten Höhe ist das Kondensationsni-
     Auf der Erde kann Wasser bekanntlich in gasförmigem, flüssigem und festem             veau erreicht, das Luftpaket ist voll mit Wasserdampf, der letztlich kondensiert.
     Aggregatszustand vorkommen. Beim Übergang von einem Zustand zum nächst                Es bilden sich Wolken. Wachsen die Tröpfchen darin weiter an, kommt es zu
     höheren (z. B. vom Wasser zum Wasserdampf) wird sehr viel Energie verbraucht,         Niederschlag. Hebungsprozesse werden an Gebirgsrändern verstärkt, und so findet
     die wieder freigesetzt wird, wenn der Prozess in umgekehrter Reihenfolge abläuft,     man in Österreich ein klimatisches Niederschlagsmaximum in den Südstaulagen
     wenn also zum Beispiel Wasserdampf kondensiert. Möglich ist auch ein direkter         Kärntens im Bereich der Karnischen Alpen und Karawanken, wo die mittlere Jah-
     Übergang von Wasserdampf zu Eis (etwa Reif) oder umgekehrt (Schneeverduns-            ressumme des Niederschlags rund 2.000 mm erreicht.
     tung beispielsweise).

18                                                                                                                                                                              19
2. Meterologische und klimatologische Grundlagen                                   2. Meterologische und klimatologische Grundlagen

     Klimamodellierung global und regional                                              Einführung neuer Technologien und eine ausgewogene Nutzung von fossilen und
                                                                                        nicht-fossilen Energiequellen. Ein optimistisches Emissionsszenario ist B1, das
     Der Blick ins vergangene Klima ist uns durch direkte Messungen und indirekte       von einem Strukturwandel der Wirtschaft in eine Dienstleistungs- und Informati-
     Klimazeugen wie Baumringe und Eisbohrkerne möglich, für den Blick in die Zu-       onsgesellschaft ausgeht, von einem Rückgang der Ressourcenaufwendung und von
     kunft ist die Modellierung des Klimas notwendig.                                   globalen Lösungen für eine wirtschaftliche, soziale und umweltgerechte Nachhal-
     Ein Modell ist ein vereinfachtes Abbild der Wirklichkeit. Klimamodelle berechnen   tigkeit. Wie beim A1B-Szenario geht die Weltbevölkerung ab 2050 zurück.
     mit mathematischen Gleichungen, die auf physikalischen Gesetzen basieren, das      Globale Klimamodelle werden wegen des enormen Aufwandes von großen For-
     vergangene, gegenwärtige und zukünftige Klima. Klimamodelle ermöglichen Aus-       schungszentren entwickelt und gerechnet. Stand der Forschung ist es, die Outputs
     sagen, wie sich die statistischen Eigenschaften der Atmosphäre, etwa die globale   verschiedener Modelle (Ensembles) und/oder gleicher Modelle mit unterschiedli-
     Mitteltemperatur oder die Häufigkeit von Hitzeperioden in einem klimarelevanten    chen Anfangsbedingungen und verschiedenen Emissionsszenarien zu vergleichen
     Zeitraum (üblicherweise 30 Jahre) darstellen bzw. ändern.                          und damit eine Bandbreite von möglichen Auswirkungen (wie Änderungen der
     Klimamodelle haben sich aus numerischen Wetter-Prognosemodellen entwickelt.        globalen Temperatur und des Niederschlags) zu erhalten. Globale Klimamodelle
     Bei der Betrachtung von längeren Zeiträumen müssen jedoch neben den atmo-          haben derzeit eine räumliche Auflösung von ca. 100 km in der Horizontalen, in der
     sphärischen Prozessen die Vorgänge in der Hydrosphäre/Kryosphäre, Biosphäre,       Vertikalen (Atmosphäre und Ozean) von etwa 20 bis 30 Schichten.
     Pedosphäre (Boden) und Lithosphäre sowie deren Wechselwirkungen untereinan-        Prozesse, die einen kleineren räumlichen Maßstab (Scale) aufweisen, können in
     der und mit der Atmosphäre eingebunden werden. Dies gelingt schon recht gut bei    globalen Modellen nicht berechnet werden. Es sind so genannte Downscaling-Me-
     den Strömungsprozessen in der Atmosphäre und den Ozeanen; große Defizite gibt      thoden notwendig, um die geforderten regionalen Aussagen über die Klimazukunft
     es z. B. noch bei der Modellierung des Wasserkreislaufes (Wolkenphysik, Nie-       treffen zu können.
     derschlagsbildung) oder der Modellierung der Chemie der Atmosphäre (Kohlen-        Ein Weg dazu führt über regionale Klimamodelle mit einer typischen Auflösung
     stoffkreislauf, Wechselwirkungen mit der Biosphäre). Auch die Modellierung des     von 10 km x 10 km, zu welchen die globalen Modelle die Randbedingungen lie-
     Einflusses der Aerosole, das sind feste oder flüssige Schwebstoffe in der Atmo-    fern. Eine andere Strategie beschreitet das statistische Regionalisierungsverfahren.
     sphäre, die abkühlend wirken und daher den Treibhauseffekt dämpfen, ist noch mit   Statistische Zusammenhänge zwischen großskaligen und kleinskaligen Prozessen
     großen Unsicherheiten behaftet.                                                    werden genutzt, um räumlich höher aufgelöste Aussagen über das künftige Klima
     Externe Klimaantriebe werden als Randbedingungen vorgegeben. Für das ver-          zu erhalten.
     gangene und jetzige Klima sind diese weitgehend bekannt – nämlich die Treib-
     hausgaskonzentration, Vulkanismus und Sonnenaktivität. Die Änderung der
     Kontinentalverteilung und der Erdbahnparameter spielen bei den interessieren-
     den Zeiträumen von wenigen hundert Jahren bei der Klimarekonstruktion und
     von hundert Jahren beim Blick in die Zukunft keine Rolle. Bei Berechnung des
     zukünftigen Klimas sind Vulkan- und Sonnenaktivität unbekannt und werden auf
     dem Ist-Niveau gehalten, geändert wird jedoch die Treibhausgaskonzentration.
     Der Klimarat IPCC hat dafür eine Reihe von Emissionsszenarien geschaffen, die
     auf unterschiedlichen politischen, gesellschaftlichen, ökologischen und ökono-
     mischen Entwicklungen beruhen. Klimaschutzmaßnahmen sind dabei noch nicht
     berücksichtigt, auf diese soll aber im 5. IPCC-Report eingegangen werden. Häufig
     verwendet wird das Emissionsszenario A1B, dem ein rasches Wirtschaftswachs-
     tum und eine ab 2050 rückläufige Weltbevölkerung zu Grunde liegt, ebenso die

20                                                                                                                                                                             21
Klima und Gesundheit                      3. Natürlicher und meschengemachter Treibhauseffekt

                                               3. NATÜRLICHER UND MENSCHENGEMACHTER

                3                              TREIBHAUSEFFEKT

                                               Fast jeder kennt heute den Begriff „Treibhauseffekt“. Aber was genau steckt
                                               dahinter? Damit es zum Treibhauseffekt kommt, braucht es so genannte Treibhaus-
                                               gase wie Kohlendioxid (CO2), Wasserdampf (H 2O) und Ozon (O 3). Sie lassen die
                                               Sonnenstrahlung ungehindert bis zur Erdoberfläche durch, absorbieren aber die In-
                                               frarotstrahlung der Erdoberfläche in großen Mengen und senden einen Teil davon
                                               wieder zur Erdoberfläche zurück – mit dem Ergebnis, dass sich die bodennahen

                            meschengemachter
                                               Luftschichten erwärmen. Übrigens: Den prinzipiellen Zusammenhang zwischen
                                               Treibhausgaskonzentration und Temperatur entdeckte der schwedische Chemiker
                                               und Physiker Svante Arrhenius bereits im 19. Jahrhundert.
                                               Treibhausgase sind notwendig, um die Temperatur der Erdoberfläche auf einem
                                               verträglichen Niveau zu halten. Gäbe es keine Atmosphäre oder bestünde sie nur
                            Natürlicher und

                            Treibhauseffekt
                                               aus Stickstoff und Sauerstoff, dann läge die durchschnittliche Oberflächentem-
                                               peratur der Erde bei –18 °C. Der natürliche Treibhauseffekt, an dem der Wasser-
                                               dampf mit etwa 60 Prozent beteiligt ist, erhöht die Temperatur in den bodennahen
                                               Luftschichten um 33 °C. Daher liegt die mittlere Temperatur derzeit bei etwa
                                               15 °C. Der Treibhauseffekt an sich ist also nichts Negatives – im Gegenteil: Wir
                                               brauchen ihn sogar.
                                               Gefährlich wird es jedoch, wenn zum natürlichen Treibhauseffekt der menschen-
                                               gemachte kommt. Wir vermehren nicht nur die ohnehin vorhandenen Gase in der
                                               Atmosphäre, sondern emittieren zusätzliche Substanzen wie Fluorchlorkohlen-
                                               wasserstoffe (FCKW) oder Stickoxide (NO x). Sind zu viele Treibhausgase in der
                                               Atmosphäre, wirkt sich das auf das Klima aus: Die untere Atmosphäre und die
                                               Erdoberfläche erwärmen sich; man spricht dann vom anthropogenen (menschen-
                                               gemachten) Treibhauseffekt. Der CO2-Gehalt hat daran einen Anteil von etwa 50
                                               Prozent.
                            –

22                                                                                                                                 23
3. Natürlicher und meschengemachter Treibhauseffekt                                 3. Natürlicher und meschengemachter Treibhauseffekt

     — 3.1 Was sind die konkreten Auswirkungen des Klimawandels?                         Tourismus
                                                                                         • Vor allem im Norden wird es in hohen Lagen im Winter mehr schneien, im
     Durch den Klimawandel ändern sich vor allem die Temperatur sowie die Intensität        Sommer wird es weniger regnen. In dieser Hinsicht dürfte der Tourismus vom
     und Häufigkeit von Niederschlägen. Vorhersagen lassen sich dabei eher die Aus-         Klimawandel profitieren.
     wirkungen der veränderten Temperatur als jene des veränderten Niederschlags.        • Die Schneesicherheit wird zurückgehen, ebenso die Zahl der Eis- und
     Im Rahmen der österreichischen Strategie zur Anpassung an den Klimawandel              Frosttage.
     des Lebensministeriums wurden auf Basis der Klimaszenarien für Österreich die       • Tauen Permafrostböden auf, kann das zu Instabilität der Infrastruktureinrich-
     zukünftig zu erwartenden Auswirkungen des Klimawandels für verschiedene Sek-           tungen führen (z. B. Einsinken von Straßen).
     toren zusammengestellt:                                                             • Liegt in Skigebieten niedriger Lagen weniger Schnee, könnten die
                                                                                            Skifahrer/innen auf die Gletscher ausweichen, was diese wiederum belastet.
     Land- und Forstwirtschaft                                                           • Steigt die Wassertemperatur, erhöht sich auch die Zahl der badetauglichen
     • Die Periode des Pflanzenwachstums verlängert sich.                                   Tage – allerdings kann durch die erhöhte Wassertemperatur auch die Belastung
     • Der Niederschlag verlagert sich: Im Sommer wird es seltener regnen, im               der Gewässer zunehmen, etwa durch Algen.
        Winter wird es dafür mehr Niederschläge geben.                                   • Wird es im Alpenraum wärmer, könnte dieser gegenüber dem heißer werden-
     • Die Niederschlagshäufigkeit im Sommer wird von Jahr zu Jahr mehr                     den Mittelmeerraum für Touristen attraktiver werden – Stichwort
        schwanken, zudem werden Trockenperioden häufiger.                                   „Sommerfrische“.
     • Die Pflanzen werden durch Hitze belastet. Verstärkt wird dies dadurch, dass       • Verstärkte Hitzeperioden im Sommer könnten den Städtetourismus abschwä-
        der Bodenwassergehalt vermutlich abnimmt. Im Süden und im Osten                     chen und ländliche Gebiete begünstigen.
        Österreichs wird es daher zu erhöhtem Trockenstress kommen.                      • Geht durch das geänderte Klima die Artenvielfalt in der Pflanzen- und Tierwelt
     • Einzelne Kulturen können gänzlich oder regional verschwinden. Gründe dafür           verloren, verliert auch das Landschaftsbild an Attraktivität.
        sind die Hitzebelastung von Pflanzen und die erhöhte Verdunstung von Wasser
        aus der Tier- und Pflanzenwelt. Es besteht daher ein erhöhtes Risiko, dass die   Energie
        Artenvielfalt sinkt und gleichzeitig neue, invasive Arten einwandern.            • Erhöhung der Niederwasserabflüsse im Winter und früherer Beginn der
                                                                                            Schneeschmelze haben Auswirkungen auf die Energieerzeugung durch Wasser-
     Wasserwirtschaft                                                                       kraftwerke.
     • Es wird weniger Schnee fallen, die Schneedecke hält weniger lange, die            • Im Spätsommer kommt es möglicherweise zu längeren Niederwasserperio-
       Schneeschmelze beginnt früher.                                                       den in alpinen Gewässern. In den vergletscherten Gebieten wird der Sommer-­
     • Mehr Winterniederschläge (besonders im Norden), weniger Sommernieder-                und Herbstabfluss steigen, da die erhöhte Gletscherschmelze zum Abfluss
       schläge.                                                                             beiträgt.
     • Der Rückgang der Gletscher setzt sich fort. Die Abflüsse aus Gletscherschmel-     • Die Wassertemperaturen steigen vor allem während sommerlicher Trockenperi-
       ze dürften um die Jahre 2040 bis 2050 ihr Maximum erreichen.                         oden. Das reduziert die thermische Belastbarkeit von Flüssen.
     • In den Alpen kommt es zur Erhöhung der Niederwasser-Durchflüsse im                • Gletscher- und Permafrostrückgang führen zu erhöhtem Geschiebeanteil
       Winter, im Flachland zur Reduktion des Niederwasser-Durchflusses im                  (Feststoffe, die vom Wasser mitgeführt werden).
       Spätsommer/Herbst.                                                                • Wir werden mehr heizen müssen – aber auch mehr kühlen. Gleichzeitig kommt
     • Grundwasser und Bäche, Flüsse, Seen werden besonders im Sommer wärmer.               es zu Kälte- und Hitzeextremen.
     • Im Süden und Osten Österreichs wird wahrscheinlich weniger Grundwasser            • Das Angebot an erneuerbaren Energieträgern ändert sich vermutlich (z. B.
       neu gebildet.                                                                        Windenergie, Solarenergie, Biomasse).

24                                                                                                                                                                          25
3. Natürlicher und meschengemachter Treibhauseffekt                                3. Natürlicher und meschengemachter Treibhauseffekt

     Bauen und Wohnen                                                                   Gesundheit
     • Die Durchschnittstemperaturen steigen und es kommt zu Temperaturextremen.        • Die Menschen leiden vermehrt unter der Hitze, bedingt durch Hitzewellen,
     • Kommt es vermehrt zu Hitzewellen, steigt die Hitzebelastung speziell in den         Wärmeinseleffekte der Städte und warme Nächte mit Temperaturen über 20 °C.
        Städten. Auch der Wärmeinseleffekt der Städte wird verstärkt.                   • Im Flachland werden neue Temperaturmaxima gemessen.
     • In den Nächten wird es häufiger Temperaturen über 20 °C geben.                   • Während Hitzeperioden werden mehr Menschen sterben, das gilt insbesondere
     • In höheren Lagen muss man mit erhöhten Schneelasten rechnen, für tiefere            für Risikogruppen, also beispielsweise für Personen mit chronischen Krankhei-
        und mittlere Lagen können sie wegen der zunehmenden Klimaschwankungen              ten oder Senior/inn/en.
        nicht ausgeschlossen werden.                                                    • Beeinträchtigte Leistungsfähigkeit während Hitzeperioden.
     • Derzeit sind noch keine belastbaren Aussagen zu Extremereignissen wie            • Krankheitserreger und -überträger finden bessere Bedingungen für Ausbrei-
        Sturm- und Hagelhäufigkeit möglich. Hier gibt es erhöhten Forschungsbedarf.        tung und Übertragung vor.
     • Kommt es zu regional unterschiedlich zunehmenden Starkniederschlägen und         • Pflanzliche und tierische Allergene können sich besser ausbreiten.
        taut der Permafrostboden, kann das im alpinen Raum vermehrt zu Muren,           • Häufigere Extremereignisse erhöhen das Risiko für Verschüttungen,
        Steinschlag, Felssturz, Rutschungen und Lawinenabgängen führen.                    Verletzungen, dauerhafte Behinderungen bis hin zu Todesfällen.
     • Erhöhtes Risiko für Wald- und Flächenbrände durch Hitzewellen.                   • Als sekundäre gesundheitliche Folgen nach Extremereignissen sind Stress und
                                                                                           psychische Störungen sowie Schimmelpilzbefall in Wohnräumen bei Feuchte-
     Verkehrsinfrastruktur                                                                 schäden möglich.
     • Steigt die Hitzebelastung, kann das zu Material- und Strukturschäden führen,     • Sommerliche Hochdruckwetterlagen können die Bildung von Luftverunreini-
        Straßenbeläge und Schienen können sich verformen.                                  gungen begünstigen.
     • Hitze erhöht das Ausfallsrisiko elektronischer Signalanlagen.                    • Höhere Temperaturen bedeuten bessere Bedingungen für Mikroorganismen in
     • Bisher nicht eindeutig belegt, aber möglich ist, dass sich lokale, kurze            Lebensmitteln. Es ist daher möglich, dass die Zahl lebensmittelbedingter
        Starkniederschläge häufen. Tritt dies ein, können Drainagesysteme überlastet       Infektionen steigt.
        werden, möglicherweise werden Unterführungen geflutet.                          • Es ist möglich, dass erhöhte Wassertemperaturen auch die Lebensbedingungen
     • Zunehmendes Risiko für Massenbewegungen wie Hangrutschungen oder Mu-                von Bakterien im Trinkwasser verbessern. Dadurch sinkt die Wasserqualität.
        renabgänge.                                                                     Die Problematik wird ausführlich in den folgenden Kapiteln behandelt.
     • Nimmt die Schneemenge in Höhenlagen über 1.800 m zu, kann es regional zu
        erhöhter Lawinengefahr kommen.                                                  Natürliche Ökosysteme/Biodiversität
     • Es ist mit weniger Eis- und Frosttagen zu rechnen.                               • Steigen Hitzebelastung und Trockenstress von Pflanzen, wie es im Süden und
     • Auftauen der Permafrostböden kann zu Instabilität der Infrastruktureinrichtun-      Osten Österreichs vermutlich der Fall sein wird, könnte die Artenvielfalt
        gen führen und die Steinschlaggefahr erhöhen.                                      leiden.
     • Belastbare Aussagen zum Thema Stürme sind derzeit noch nicht möglich.            • Steigt die Jahresmitteltemperatur, verlängert sich die Vegetationsperiode.
        Treten Stürme jedoch häufiger auf, muss man mit Schäden an der elektroni-          Dadurch dehnt sich auch der Zeitraum der pflanzlichen Transpiration aus: Die
        schen Infrastruktur rechnen; ebenso mit Behinderungen, etwa von Zügen oder         Pflanzen geben im Lauf eines Jahres mehr Wasser ab.
        Kfz.                                                                            • Anstieg der Wassertemperaturen vor allem während sommerlicher Trockenpe-
                                                                                           rioden. Eine mögliche Folge ist verstärktes Algenwachstum.
                                                                                        • Verschiebung von Arealgrenzen (Areal = Verbreitungsgebiet einer Art).
                                                                                        • Änderungen in der Artenzusammensetzung in Lebensgemeinschaften und Bio-
                                                                                           topen; Verlust von Lebensräumen und Arten, Ausbreitung neuer, invasiver
                                                                                           Arten.

26                                                                                                                                                                         27
3. Natürlicher und meschengemachter Treibhauseffekt                                  3. Natürlicher und meschengemachter Treibhauseffekt

     ­— 3.2 Klimawandel: Die spezielle Sicht auf Kärnten                                  Über einen langen Zeitraum betrachtet, gibt es in Kärnten (und großen Teilen
                                                                                          Österreichs) immer weniger Niederschlag. Seit 1900 sank die Niederschlagsmenge
     Kärnten liegt im Einflussbereich des atlantischen, des mediterranen und des konti-   vor allem im Winterhalbjahr deutlich. Im südalpinen Raum gab es 1980 jedoch
     nentalen Klimas. Höhenschichtung und Landnutzung sind lokal prägende Kli-            eine Trendwende: Die Niederschlagsmenge nahm zu – und zwar in allen Jahreszei-
     mafaktoren – sie werden aber überlagert von den globalen internen und externen       ten. Auch extreme Tagesniederschläge sind häufiger geworden; und so gehen im
     Klimaschwankungen.                                                                   alpinen Gelände auch häufiger Muren ab.
     Der kälteste Ort Kärntens – und ganz Österreichs – ist der Gipfel des Großglock-     Im Sonnenland Kärnten wurde es seit 1900 noch sonniger: Auf den Bergen um
     ners. Am wärmsten ist es kärntenweit in Klagenfurt samt Umland. Die durch-           rund 250 Stunden im Jahr (ca. 15 %), in den Tälern und Becken um etwa 85
     schnittliche Lufttemperatur über das Jahr beträgt hier 8,2 °C, das Jännermittel      Stunden (5 %). Die mittlere Jahressumme der Sonnenscheindauer 1971 bis 2000
     –3,6 °C und das Julimittel 19,0 °C. Zum Vergleich: In der Wiener Innenstadt –        beträgt in Klagenfurt 1.820 Stunden, auf der Villacher Alpe 2.013 Stunden. Wie
     dem wärmsten Ort Österreichs – liegen die Temperaturmittelwerte bei 11,8 °C;         auch bei der Lufttemperatur gab es bis 1950 eine Zunahme der Sonnenscheindau-
     2,2 °C und 21,5 °C (alle Werte gelten für die Periode 1971 bis 2000).                er, darauf folgte eine Abnahme in den nächsten 30 Jahren. Ab 1980 nahm die Zahl
     In ganz Kärnten ist wie im gesamten Alpenraum das Jahresmittel der Lufttempe-        der Sonnenstunden wieder deutlich zu. Dies zeigt, dass durch die zunehmende
     ratur seit 1900 um 1,4 bis 1,6 °C gestiegen. Im Vergleich dazu stieg das globale     Luftverschmutzung von 1950 bis 1980 nicht nur der Temperaturanstieg stagnierte,
     Mittel lediglich um 0,8 °C. Unterbrochen wurde der Trend von 1950 bis 1980 von       sondern auch die Sonnenscheindauer sank.
     einem leichten Temperaturrückgang um etwa 0,3 °C.
     Am stärksten stiegen die Durchschnittstemperaturen im Sommer, am wenigsten           — 3.2.1 Das thermische Befinden des Menschen
     die im Herbst. Verglichen mit der Periode 1970 bis 2000 sank die Zahl der Frost-
     tage von 1980 bis 2009 um etwa 20 bis 30 Tage. Die Zahl der Eistage (Tempe-          Lufttemperatur, Luftfeuchtigkeit, Wind und Sonnenstrahlung haben Auswirkungen
     ratur den ganzen Tag unter 0 °C) hat sich im selben Zeitraum um 10 bis 20 Tage       auf das thermische Befinden des Menschen. Um all diese Größen zusammen-
     verringert. Es gibt besonders in niedrigen Seehöhen mehr heiße Tage mit einem        zufassen, gibt es Berechnungen zur „Physiologisch äquivalenten Temperatur“
     Tagesmaximum von mindestens 30 °C, und im Durschnitt zehn warme Nächte               (PET) und zur „Gefühlten Temperatur“ (perceived temperature – PT). Siehe dazu
     mehr. Hitzeperioden von mindestens sechstägiger Dauer sind generell häufiger ge-     „Gefühlte Temperatur und PET“, Seite 13. Beide Parameter sind besser geeignet
     worden – besonders im Raum des Unteren Lavanttals und im Drautal.                    für die Charakterisierung des thermischen Befindens als die oben angeführten Kli-
     Wie die mittlere Temperaturverteilung folgt auch die mittlere Niederschlagsvertei-   maelemente allein. Untersuchungen zeigten, dass bereits eine mäßige Wärmebe-
     lung den Höhenschichtlinien (die Niederschläge nehmen mit der Höhe zu); über-        lastung (PET 29 °C bis 35 °C) zu einem leichten Anstieg der Mortalitätsrate führt,
     prägt ist der Staueffekt an den Gebirgszügen Karawanken und Karnische Alpen.         die bei starker (PET 35 °C bis 41 °C) und extremer Wärmebelastung (PET größer
     Bei entsprechender Wetterlage wird hier die mit Feuchtigkeit gesättigte Luft aus     41 °C) weiter zunimmt.
     dem Mittelmeerraum zum Aufsteigen und letztendlich zum Ausregnen gezwungen.
     Im Winterhalbjahr fällt in Österreich im Bereich des Naßfeldes der meiste Nie-       — 3.2.2 Zukünftige Trends
     derschlag. In der Periode 1971 bis 2000 waren es 1.440 mm, im Vergleich dazu
     kommt das Untere Kamptal (NÖ) auf lediglich 150 mm. Im Sommer und über das           Um die Entwicklung des Klimas in Kärnten zu bestimmen, wurden zwei regionale
     Jahr verteilt verschiebt sich das österreichische Niederschlagsmaximum auf die       Klimamodelle (REMO und CLM) herangezogen, gerechnet für die zwei Emis-
     Venediger Gruppe (1.590 mm bzw. 2.490 mm), das Minimum auf die Laaer Ebene           sionsszenarien A1B und B1 (siehe „Klimamodellierung“, Seite 20). A1B wird
     (310 mm bzw. 470 mm). Der Sommer- und Jahreswert von Klagenfurt beträgt              allgemein als das wahrscheinlichere der beiden Emissionsszenarien angesehen,
     581 mm respektive 888 mm. Im Herbst niederschlagsreich sind Lesachtal und            während B1 ein sehr optimistisches Szenario ist, das von geringer werdenden
     Gailtal sowie andere südliche Landesteile, was ein typisches Merkmal des             Treibhausgasemissionen ausgeht.
     mediterran-adriatischen Klimas ist.                                                  Übereinstimmend mit den globalen Modellen zeigen die aktuellen Berechnungen,

28                                                                                                                                                                             29
3. Natürlicher und meschengemachter Treibhauseffekt                               3. Natürlicher und meschengemachter Treibhauseffekt

     dass die sommerlichen Maximum- und Minimumtemperaturen voraussichtlich
     erst ab 2030/2040 deutlich steigen werden. Anfangs überwiegen die Jahr-zu-Jahr-
     Variationen, aber spätestens Mitte des 21. Jahrhunderts klettert die Temperatur
     deutlich nach oben. Abbildung 2 zeigt die zu erwartende Erwärmung bis 2100 für
     Klagenfurt.

                                                                                       Abbildung 2: Zeitliche Entwicklung der Lufttemperatur (Sommermittel) in Klagenfurt bis 2100.
                                                                                       Dargestellt sind die Ergebnisse zweier Modelle für zwei Emissionsszenarien (bez. Treibhausgas-
                                                                                       emissionen) relativ zum Modellmittel 1971–2000. Grau schattiert ist der 95 %-Vertrauensbereich
                                                                                       (Quelle: MortKlim-Projektendbericht, ZAMG 2010).

30                                                                                                                                                                                      31
3. Natürlicher und meschengemachter Treibhauseffekt                                                          3. Natürlicher und meschengemachter Treibhauseffekt

     In Tabelle 1 wird die thermische Belastung für Klagenfurt für den Zeitraum 1970                              Betrachtet man ganz Österreich, zeigt sich, dass die Zunahme der Tage mit zumin-
     bis 2007 dargestellt, und zwar in Form der mittleren Anzahl der Tage der einzel-                             dest starkem Hitzestress (PET >35 °C) im Zeitraum 2071 bis 2100 im Klagenfur-
     nen Belastungsklassen. In Tabelle 2 werden die relativen Änderungen im Zeitraum                              ter Becken und am Alpenostrand am stärksten ist (Abbildung 3).
     2071–2100 für zwei Klimamodelle (REMO bzw. CLM) und die Szenarien A1B
     und B1 (siehe vorhin) zusammengefasst. Es zeigt sich, dass die Zahl der Tage mit
     extremer Wärmebelastung im Zeitraum 2071 bis 2100 je nach Szenario um rund
     105 Prozent bis zu rund 210 Prozent zunimmt (siehe Tabellen 1 und 2).

     Tabelle 1: Mittlere Anzahl der Tage der einzelnen Belastungsklassen zwischen 1970–2007 in den
     Monaten April bis Oktober (gerundet).

                                                      thermische Belastung

                         keine – schwache             mäßige               starke                extreme

      Klagenfurt                130                     43                  32                     12

     Tabelle 2: Klagenfurt: Prozentuelle Änderung der mittleren Anzahl der Tage mit entsprechender
     Belastung zwischen 2071–2100 gegenüber 1970–2007. Klimamodelle REMO und CLM, Emissi-
     onsszenarien B1 und A1B (siehe „Klimamodellierung“, Seite 20).

                                        B1                                            A1B

                    keine –    mäßige    starke        extreme   keine –     mäßige     starke       extreme
      Thermische
                    schwa-                                       schwa-
      Belastung     che                                          che

                                                                                                                  Abbildung 3: Tage mit zumindest starker thermischer Belastung (PET >35 °C) im Zeitraum
      REMO           –22,0 %    9,6 %        29,5 %    105,2 %   –30,8 %      –0,6 %     39,3 %         211,6 %
                                                                                                                  2071–2100, jährliche Abweichung vom Referenzzeitraum 1971 bis 2000. Klimamodelle CLM und
                                                                                                                  REMO, Szenarien A1B und B1 (siehe „Klimamodellierung“, Seite 20)
      CLM            –19,8 %   –3,0 %        26,9 %    134,0 %   –26,9 %      –5,6 %     30,0 %         212,1 %
                                                                                                                  (Quelle: TourKlim-Projektendbericht, ZAMG 2011).

32                                                                                                                                                                                                           33
3. Natürlicher und meschengemachter Treibhauseffekt                                   3. Natürlicher und meschengemachter Treibhauseffekt

     Was den Kältestress (PET kleiner 0 °C) angeht, so entwickelt sich die Lage            allem wegen des Ozonrückgangs stark abgekühlt hat.
     voraussichtlich gegenläufig zum Trend beim Hitzestress: Vermutlich wird der           Die Ursachenskeptiker/innen bezweifeln, dass der Mensch für den Erwärmungs-
     Kältestress im Zeitraum 2021 bis 2050 mäßig sinken, sich aber von etwa 2050 bis       trend verantwortlich ist. Der Mensch sei zwar Verursacher der CO2-Zunahme in
     2100 deutlich verstärken.                                                             der Atmosphäre, die Erwärmung habe aber andere, natürliche Ursachen. Zumeist
     Was den zukünftigen Niederschlag in Kärnten betrifft, muss man festhalten, dass       führen sie die Klimaerwärmung auf eine Änderung der Sonnenaktivität und/
     die Güte der Vorhersage deutlich geringer ist als bei der Temperatur – vor allem      oder der kosmischen Strahlung zurück. Zum Beweis dafür werden statistische
     im Sommer, wo kleinräumige Niederschläge wie lokale Gewitter einen großen             Korrelationen herangezogen, die allerdings einer näheren Analyse nicht stand-
     Beitrag zum Gesamtniederschlag liefern. Übereinstimmend mit den Ergebnissen           halten. Fakt ist, dass in der Vergangenheit Schwankungen der Sonnenaktivität
     anderer Untersuchungen wird der Niederschlag im Winterhalbjahr zunehmen.              zu Klimaschwankungen beigetragen haben. Als Beispiel sei das kühle Klima um
     Auch für den Sommer kann man erwarten, dass die Niederschlagsmenge bis 2100           1700, zur Zeit des Maunder-Minimums, einer Periode sehr geringer Sonnenfle-
     zunimmt. Dies widerspricht den meisten bis dato vorliegenden Trends, die trocke-      ckenaktivität, angeführt. In Klimamodellen kann man unter Berücksichtigung der
     nere Sommer erwarten lassen.                                                          Sonnenaktivität (und der Vulkanaktivität) das Klima der letzten 1.000 Jahre recht
     Zusammenfassend gilt, dass die thermische Belastung im warmen Bereich von             gut reproduzieren, die Schwankungen der Sonnenaktivität im 20. Jahrhundert sind
     2071 bis 2100 deutlich steigen wird. Kältestress dagegen wird seltener vorkom-        aber erstens zu gering, um die rezente Erwärmung zu erklären und zweitens zeigen
     men. Dies entspricht den Erwartungen aus europaweiten Studien. Die Nieder-            Rekonstruktionen der Sonnenaktivität zwar einen Anstieg bis 1940, seither aber
     schlagsmenge wird vermutlich sowohl im Sommer- als auch im Winterhalbjahr             keinen signifikanten Trend. Dies gilt auch für die kosmische Strahlung.
     zunehmen.                                                                             Letztendlich weisen Folgenskeptiker/innen auf mögliche positive Folgen einer
                                                                                           Klimaerwärmung hin. Unzweifelhaft gibt es Klimagewinner/innen und Klimaver-
                                                                                           lierer/innen, die Verlierer/innen sind aber in der Überzahl. Auch das rasche Tempo
                                                                                           der Erwärmung hat überwiegend negative Auswirkungen, weil unsere Gesellschaft
     Klimaskeptiker/innen und ihre Argumente                                               und die Ökosysteme an das jetzige Klima angepasst sind. Zum Beispiel wurde der
                                                                                           Siedlungsraum in alpinen Gebieten ausgedehnt, Starkniederschläge mit nachfol-
     Trendskeptiker/innen argumentieren, dass keine signifikante Klimaerwärmung            genden Vermurungen können Menschenleben gefährden und führen zumindest zu
     stattfindet, der Erwärmungstrend in den Temperaturreihen sei ein Produkt der          hohen wirtschaftlichen Schäden. Hitzeperioden wie 2003 kosten vor allem in ther-
     Verstädterung (städtische Wärmeinseln). Dem ist entgegenzuhalten, dass die            misch vorbelasteten Städten zahlreiche Menschenleben. Der Anstieg des Meeres-
     Messdaten diesbezüglich korrigiert werden. Auch die über den Ozeanen und              spiegels, der sich auch nach Reduzierung der Treibhausgasemissionen fortsetzen
     auf Bergobservatorien fernab jeder Zivilisation gemessenen Temperaturen, der          wird, stellt eine Bedrohung von vielen Menschen dar, viele Mega-Städte liegen an
     Gletscherschwund, das Schrumpfen des arktischen Meereises, die polwärts oder in       der derzeitigen Küstenlinie. Die letzte vergleichbar große globale Erwärmung gab
     größere Höhen gerichtete Verschiebung wärmeliebender Pflanzen sprechen gegen          es, als vor ca. 15.000 Jahren die letzte Eiszeit zu Ende ging und sich das Klima
     die Trendskeptiker/innen. Des Weiteren sollen Satellitenmessungen ihrer Meinung       global um ca. 5 °C erwärmte. Auch diese Klimaerwärmung hatte schwer wiegen-
     nach keinen oder nur einen schwachen Erwärmungstrend seit Messbeginn in den           de Auswirkungen auf Menschen und Ökosysteme. Doch sie erfolgte über einen
     späten 1970ern erkennen lassen. Wegen der Inhomogenität dieser Messdaten, die         Zeitraum von 5.000 Jahren – der Mensch droht nun einen ähnlich einschneidenden
     von unterschiedlichen Instrumenten, von unterschiedlichen Kalibriermethoden,          Klimawandel innerhalb eines Jahrhunderts herbeizuführen, was die Anpassungsfä-
     Änderungen der Umlaufbahnen der Satelliten und Ähnlichem herrühren, mussten           higkeit von Natur und Mensch deutlich überfordern dürfte.
     die Ergebnisse allerdings schon mehrfach erheblich korrigiert werden. Sie stützen
     daher die Argumente der Klimaskeptiker/innen nicht mehr. Ein weiterer Fehler
     rührt daher, dass Satelliten die Strahlung der Stratosphäre mitmessen, die sich vor

34                                                                                                                                                                              35
Sie können auch lesen